File:  [local] / rpl / lapack / lapack / dstemr.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:11 2016 UTC (7 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b DSTEMR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSTEMR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstemr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstemr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstemr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
   22: *                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
   23: *                          IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE
   27: *       LOGICAL            TRYRAC
   28: *       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
   29: *       DOUBLE PRECISION VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
   34: *       DOUBLE PRECISION   Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DSTEMR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
   45: *> a well defined set of pairwise different real eigenvalues, the corresponding
   46: *> real eigenvectors are pairwise orthogonal.
   47: *>
   48: *> The spectrum may be computed either completely or partially by specifying
   49: *> either an interval (VL,VU] or a range of indices IL:IU for the desired
   50: *> eigenvalues.
   51: *>
   52: *> Depending on the number of desired eigenvalues, these are computed either
   53: *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
   54: *> computed by the use of various suitable L D L^T factorizations near clusters
   55: *> of close eigenvalues (referred to as RRRs, Relatively Robust
   56: *> Representations). An informal sketch of the algorithm follows.
   57: *>
   58: *> For each unreduced block (submatrix) of T,
   59: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   60: *>        define all the wanted eigenvalues to high relative accuracy.
   61: *>        This means that small relative changes in the entries of D and L
   62: *>        cause only small relative changes in the eigenvalues and
   63: *>        eigenvectors. The standard (unfactored) representation of the
   64: *>        tridiagonal matrix T does not have this property in general.
   65: *>    (b) Compute the eigenvalues to suitable accuracy.
   66: *>        If the eigenvectors are desired, the algorithm attains full
   67: *>        accuracy of the computed eigenvalues only right before
   68: *>        the corresponding vectors have to be computed, see steps c) and d).
   69: *>    (c) For each cluster of close eigenvalues, select a new
   70: *>        shift close to the cluster, find a new factorization, and refine
   71: *>        the shifted eigenvalues to suitable accuracy.
   72: *>    (d) For each eigenvalue with a large enough relative separation compute
   73: *>        the corresponding eigenvector by forming a rank revealing twisted
   74: *>        factorization. Go back to (c) for any clusters that remain.
   75: *>
   76: *> For more details, see:
   77: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   78: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   79: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   80: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   81: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   82: *>   2004.  Also LAPACK Working Note 154.
   83: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   84: *>   tridiagonal eigenvalue/eigenvector problem",
   85: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   86: *>   UC Berkeley, May 1997.
   87: *>
   88: *> Further Details
   89: *> 1.DSTEMR works only on machines which follow IEEE-754
   90: *> floating-point standard in their handling of infinities and NaNs.
   91: *> This permits the use of efficient inner loops avoiding a check for
   92: *> zero divisors.
   93: *> \endverbatim
   94: *
   95: *  Arguments:
   96: *  ==========
   97: *
   98: *> \param[in] JOBZ
   99: *> \verbatim
  100: *>          JOBZ is CHARACTER*1
  101: *>          = 'N':  Compute eigenvalues only;
  102: *>          = 'V':  Compute eigenvalues and eigenvectors.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] RANGE
  106: *> \verbatim
  107: *>          RANGE is CHARACTER*1
  108: *>          = 'A': all eigenvalues will be found.
  109: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  110: *>                 will be found.
  111: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] N
  115: *> \verbatim
  116: *>          N is INTEGER
  117: *>          The order of the matrix.  N >= 0.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] D
  121: *> \verbatim
  122: *>          D is DOUBLE PRECISION array, dimension (N)
  123: *>          On entry, the N diagonal elements of the tridiagonal matrix
  124: *>          T. On exit, D is overwritten.
  125: *> \endverbatim
  126: *>
  127: *> \param[in,out] E
  128: *> \verbatim
  129: *>          E is DOUBLE PRECISION array, dimension (N)
  130: *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
  131: *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
  132: *>          input, but is used internally as workspace.
  133: *>          On exit, E is overwritten.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] VL
  137: *> \verbatim
  138: *>          VL is DOUBLE PRECISION
  139: *>
  140: *>          If RANGE='V', the lower bound of the interval to
  141: *>          be searched for eigenvalues. VL < VU.
  142: *>          Not referenced if RANGE = 'A' or 'I'.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] VU
  146: *> \verbatim
  147: *>          VU is DOUBLE PRECISION
  148: *>
  149: *>          If RANGE='V', the upper bound of the interval to
  150: *>          be searched for eigenvalues. VL < VU.
  151: *>          Not referenced if RANGE = 'A' or 'I'.
  152: *> \endverbatim
  153: *>
  154: *> \param[in] IL
  155: *> \verbatim
  156: *>          IL is INTEGER
  157: *>
  158: *>          If RANGE='I', the index of the
  159: *>          smallest eigenvalue to be returned.
  160: *>          1 <= IL <= IU <= N, if N > 0.
  161: *>          Not referenced if RANGE = 'A' or 'V'.
  162: *> \endverbatim
  163: *>
  164: *> \param[in] IU
  165: *> \verbatim
  166: *>          IU is INTEGER
  167: *>
  168: *>          If RANGE='I', the index of the
  169: *>          largest eigenvalue to be returned.
  170: *>          1 <= IL <= IU <= N, if N > 0.
  171: *>          Not referenced if RANGE = 'A' or 'V'.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] M
  175: *> \verbatim
  176: *>          M is INTEGER
  177: *>          The total number of eigenvalues found.  0 <= M <= N.
  178: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  179: *> \endverbatim
  180: *>
  181: *> \param[out] W
  182: *> \verbatim
  183: *>          W is DOUBLE PRECISION array, dimension (N)
  184: *>          The first M elements contain the selected eigenvalues in
  185: *>          ascending order.
  186: *> \endverbatim
  187: *>
  188: *> \param[out] Z
  189: *> \verbatim
  190: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
  191: *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
  192: *>          contain the orthonormal eigenvectors of the matrix T
  193: *>          corresponding to the selected eigenvalues, with the i-th
  194: *>          column of Z holding the eigenvector associated with W(i).
  195: *>          If JOBZ = 'N', then Z is not referenced.
  196: *>          Note: the user must ensure that at least max(1,M) columns are
  197: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  198: *>          is not known in advance and can be computed with a workspace
  199: *>          query by setting NZC = -1, see below.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDZ
  203: *> \verbatim
  204: *>          LDZ is INTEGER
  205: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  206: *>          JOBZ = 'V', then LDZ >= max(1,N).
  207: *> \endverbatim
  208: *>
  209: *> \param[in] NZC
  210: *> \verbatim
  211: *>          NZC is INTEGER
  212: *>          The number of eigenvectors to be held in the array Z.
  213: *>          If RANGE = 'A', then NZC >= max(1,N).
  214: *>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
  215: *>          If RANGE = 'I', then NZC >= IU-IL+1.
  216: *>          If NZC = -1, then a workspace query is assumed; the
  217: *>          routine calculates the number of columns of the array Z that
  218: *>          are needed to hold the eigenvectors.
  219: *>          This value is returned as the first entry of the Z array, and
  220: *>          no error message related to NZC is issued by XERBLA.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] ISUPPZ
  224: *> \verbatim
  225: *>          ISUPPZ is INTEGER ARRAY, dimension ( 2*max(1,M) )
  226: *>          The support of the eigenvectors in Z, i.e., the indices
  227: *>          indicating the nonzero elements in Z. The i-th computed eigenvector
  228: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  229: *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
  230: *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
  231: *> \endverbatim
  232: *>
  233: *> \param[in,out] TRYRAC
  234: *> \verbatim
  235: *>          TRYRAC is LOGICAL
  236: *>          If TRYRAC.EQ..TRUE., indicates that the code should check whether
  237: *>          the tridiagonal matrix defines its eigenvalues to high relative
  238: *>          accuracy.  If so, the code uses relative-accuracy preserving
  239: *>          algorithms that might be (a bit) slower depending on the matrix.
  240: *>          If the matrix does not define its eigenvalues to high relative
  241: *>          accuracy, the code can uses possibly faster algorithms.
  242: *>          If TRYRAC.EQ..FALSE., the code is not required to guarantee
  243: *>          relatively accurate eigenvalues and can use the fastest possible
  244: *>          techniques.
  245: *>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
  246: *>          does not define its eigenvalues to high relative accuracy.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] WORK
  250: *> \verbatim
  251: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  252: *>          On exit, if INFO = 0, WORK(1) returns the optimal
  253: *>          (and minimal) LWORK.
  254: *> \endverbatim
  255: *>
  256: *> \param[in] LWORK
  257: *> \verbatim
  258: *>          LWORK is INTEGER
  259: *>          The dimension of the array WORK. LWORK >= max(1,18*N)
  260: *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
  261: *>          If LWORK = -1, then a workspace query is assumed; the routine
  262: *>          only calculates the optimal size of the WORK array, returns
  263: *>          this value as the first entry of the WORK array, and no error
  264: *>          message related to LWORK is issued by XERBLA.
  265: *> \endverbatim
  266: *>
  267: *> \param[out] IWORK
  268: *> \verbatim
  269: *>          IWORK is INTEGER array, dimension (LIWORK)
  270: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  271: *> \endverbatim
  272: *>
  273: *> \param[in] LIWORK
  274: *> \verbatim
  275: *>          LIWORK is INTEGER
  276: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
  277: *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
  278: *>          if only the eigenvalues are to be computed.
  279: *>          If LIWORK = -1, then a workspace query is assumed; the
  280: *>          routine only calculates the optimal size of the IWORK array,
  281: *>          returns this value as the first entry of the IWORK array, and
  282: *>          no error message related to LIWORK is issued by XERBLA.
  283: *> \endverbatim
  284: *>
  285: *> \param[out] INFO
  286: *> \verbatim
  287: *>          INFO is INTEGER
  288: *>          On exit, INFO
  289: *>          = 0:  successful exit
  290: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  291: *>          > 0:  if INFO = 1X, internal error in DLARRE,
  292: *>                if INFO = 2X, internal error in DLARRV.
  293: *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
  294: *>                the nonzero error code returned by DLARRE or
  295: *>                DLARRV, respectively.
  296: *> \endverbatim
  297: *
  298: *  Authors:
  299: *  ========
  300: *
  301: *> \author Univ. of Tennessee 
  302: *> \author Univ. of California Berkeley 
  303: *> \author Univ. of Colorado Denver 
  304: *> \author NAG Ltd. 
  305: *
  306: *> \date June 2016
  307: *
  308: *> \ingroup doubleOTHERcomputational
  309: *
  310: *> \par Contributors:
  311: *  ==================
  312: *>
  313: *> Beresford Parlett, University of California, Berkeley, USA \n
  314: *> Jim Demmel, University of California, Berkeley, USA \n
  315: *> Inderjit Dhillon, University of Texas, Austin, USA \n
  316: *> Osni Marques, LBNL/NERSC, USA \n
  317: *> Christof Voemel, University of California, Berkeley, USA
  318: *
  319: *  =====================================================================
  320:       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
  321:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
  322:      $                   IWORK, LIWORK, INFO )
  323: *
  324: *  -- LAPACK computational routine (version 3.6.1) --
  325: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  326: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  327: *     June 2016
  328: *
  329: *     .. Scalar Arguments ..
  330:       CHARACTER          JOBZ, RANGE
  331:       LOGICAL            TRYRAC
  332:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
  333:       DOUBLE PRECISION VL, VU
  334: *     ..
  335: *     .. Array Arguments ..
  336:       INTEGER            ISUPPZ( * ), IWORK( * )
  337:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
  338:       DOUBLE PRECISION   Z( LDZ, * )
  339: *     ..
  340: *
  341: *  =====================================================================
  342: *
  343: *     .. Parameters ..
  344:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
  345:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
  346:      $                     FOUR = 4.0D0,
  347:      $                     MINRGP = 1.0D-3 )
  348: *     ..
  349: *     .. Local Scalars ..
  350:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
  351:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
  352:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
  353:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
  354:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
  355:      $                   NZCMIN, OFFSET, WBEGIN, WEND
  356:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
  357:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
  358:      $                   THRESH, TMP, TNRM, WL, WU
  359: *     ..
  360: *     ..
  361: *     .. External Functions ..
  362:       LOGICAL            LSAME
  363:       DOUBLE PRECISION   DLAMCH, DLANST
  364:       EXTERNAL           LSAME, DLAMCH, DLANST
  365: *     ..
  366: *     .. External Subroutines ..
  367:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
  368:      $                   DLARRR, DLARRV, DLASRT, DSCAL, DSWAP, XERBLA
  369: *     ..
  370: *     .. Intrinsic Functions ..
  371:       INTRINSIC          MAX, MIN, SQRT
  372: 
  373: 
  374: *     ..
  375: *     .. Executable Statements ..
  376: *
  377: *     Test the input parameters.
  378: *
  379:       WANTZ = LSAME( JOBZ, 'V' )
  380:       ALLEIG = LSAME( RANGE, 'A' )
  381:       VALEIG = LSAME( RANGE, 'V' )
  382:       INDEIG = LSAME( RANGE, 'I' )
  383: *
  384:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
  385:       ZQUERY = ( NZC.EQ.-1 )
  386: 
  387: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
  388: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
  389: *     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N.
  390:       IF( WANTZ ) THEN
  391:          LWMIN = 18*N
  392:          LIWMIN = 10*N
  393:       ELSE
  394: *        need less workspace if only the eigenvalues are wanted
  395:          LWMIN = 12*N
  396:          LIWMIN = 8*N
  397:       ENDIF
  398: 
  399:       WL = ZERO
  400:       WU = ZERO
  401:       IIL = 0
  402:       IIU = 0
  403:       NSPLIT = 0
  404: 
  405:       IF( VALEIG ) THEN
  406: *        We do not reference VL, VU in the cases RANGE = 'I','A'
  407: *        The interval (WL, WU] contains all the wanted eigenvalues.
  408: *        It is either given by the user or computed in DLARRE.
  409:          WL = VL
  410:          WU = VU
  411:       ELSEIF( INDEIG ) THEN
  412: *        We do not reference IL, IU in the cases RANGE = 'V','A'
  413:          IIL = IL
  414:          IIU = IU
  415:       ENDIF
  416: *
  417:       INFO = 0
  418:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  419:          INFO = -1
  420:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  421:          INFO = -2
  422:       ELSE IF( N.LT.0 ) THEN
  423:          INFO = -3
  424:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
  425:          INFO = -7
  426:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
  427:          INFO = -8
  428:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
  429:          INFO = -9
  430:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  431:          INFO = -13
  432:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  433:          INFO = -17
  434:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  435:          INFO = -19
  436:       END IF
  437: *
  438: *     Get machine constants.
  439: *
  440:       SAFMIN = DLAMCH( 'Safe minimum' )
  441:       EPS = DLAMCH( 'Precision' )
  442:       SMLNUM = SAFMIN / EPS
  443:       BIGNUM = ONE / SMLNUM
  444:       RMIN = SQRT( SMLNUM )
  445:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  446: *
  447:       IF( INFO.EQ.0 ) THEN
  448:          WORK( 1 ) = LWMIN
  449:          IWORK( 1 ) = LIWMIN
  450: *
  451:          IF( WANTZ .AND. ALLEIG ) THEN
  452:             NZCMIN = N
  453:          ELSE IF( WANTZ .AND. VALEIG ) THEN
  454:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
  455:      $                            NZCMIN, ITMP, ITMP2, INFO )
  456:          ELSE IF( WANTZ .AND. INDEIG ) THEN
  457:             NZCMIN = IIU-IIL+1
  458:          ELSE
  459: *           WANTZ .EQ. FALSE.
  460:             NZCMIN = 0
  461:          ENDIF
  462:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
  463:             Z( 1,1 ) = NZCMIN
  464:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
  465:             INFO = -14
  466:          END IF
  467:       END IF
  468: 
  469:       IF( INFO.NE.0 ) THEN
  470: *
  471:          CALL XERBLA( 'DSTEMR', -INFO )
  472: *
  473:          RETURN
  474:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
  475:          RETURN
  476:       END IF
  477: *
  478: *     Handle N = 0, 1, and 2 cases immediately
  479: *
  480:       M = 0
  481:       IF( N.EQ.0 )
  482:      $   RETURN
  483: *
  484:       IF( N.EQ.1 ) THEN
  485:          IF( ALLEIG .OR. INDEIG ) THEN
  486:             M = 1
  487:             W( 1 ) = D( 1 )
  488:          ELSE
  489:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
  490:                M = 1
  491:                W( 1 ) = D( 1 )
  492:             END IF
  493:          END IF
  494:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  495:             Z( 1, 1 ) = ONE
  496:             ISUPPZ(1) = 1
  497:             ISUPPZ(2) = 1
  498:          END IF
  499:          RETURN
  500:       END IF
  501: *
  502:       IF( N.EQ.2 ) THEN
  503:          IF( .NOT.WANTZ ) THEN
  504:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
  505:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  506:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
  507:          END IF
  508:          IF( ALLEIG.OR.
  509:      $      (VALEIG.AND.(R2.GT.WL).AND.
  510:      $                  (R2.LE.WU)).OR.
  511:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
  512:             M = M+1
  513:             W( M ) = R2
  514:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  515:                Z( 1, M ) = -SN
  516:                Z( 2, M ) = CS
  517: *              Note: At most one of SN and CS can be zero.
  518:                IF (SN.NE.ZERO) THEN
  519:                   IF (CS.NE.ZERO) THEN
  520:                      ISUPPZ(2*M-1) = 1
  521:                      ISUPPZ(2*M) = 2
  522:                   ELSE
  523:                      ISUPPZ(2*M-1) = 1
  524:                      ISUPPZ(2*M) = 1
  525:                   END IF
  526:                ELSE
  527:                   ISUPPZ(2*M-1) = 2
  528:                   ISUPPZ(2*M) = 2
  529:                END IF
  530:             ENDIF
  531:          ENDIF
  532:          IF( ALLEIG.OR.
  533:      $      (VALEIG.AND.(R1.GT.WL).AND.
  534:      $                  (R1.LE.WU)).OR.
  535:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
  536:             M = M+1
  537:             W( M ) = R1
  538:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
  539:                Z( 1, M ) = CS
  540:                Z( 2, M ) = SN
  541: *              Note: At most one of SN and CS can be zero.
  542:                IF (SN.NE.ZERO) THEN
  543:                   IF (CS.NE.ZERO) THEN
  544:                      ISUPPZ(2*M-1) = 1
  545:                      ISUPPZ(2*M) = 2
  546:                   ELSE
  547:                      ISUPPZ(2*M-1) = 1
  548:                      ISUPPZ(2*M) = 1
  549:                   END IF
  550:                ELSE
  551:                   ISUPPZ(2*M-1) = 2
  552:                   ISUPPZ(2*M) = 2
  553:                END IF
  554:             ENDIF
  555:          ENDIF
  556: 
  557:       ELSE
  558: 
  559: *     Continue with general N
  560: 
  561:          INDGRS = 1
  562:          INDERR = 2*N + 1
  563:          INDGP = 3*N + 1
  564:          INDD = 4*N + 1
  565:          INDE2 = 5*N + 1
  566:          INDWRK = 6*N + 1
  567: *
  568:          IINSPL = 1
  569:          IINDBL = N + 1
  570:          IINDW = 2*N + 1
  571:          IINDWK = 3*N + 1
  572: *
  573: *        Scale matrix to allowable range, if necessary.
  574: *        The allowable range is related to the PIVMIN parameter; see the
  575: *        comments in DLARRD.  The preference for scaling small values
  576: *        up is heuristic; we expect users' matrices not to be close to the
  577: *        RMAX threshold.
  578: *
  579:          SCALE = ONE
  580:          TNRM = DLANST( 'M', N, D, E )
  581:          IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
  582:             SCALE = RMIN / TNRM
  583:          ELSE IF( TNRM.GT.RMAX ) THEN
  584:             SCALE = RMAX / TNRM
  585:          END IF
  586:          IF( SCALE.NE.ONE ) THEN
  587:             CALL DSCAL( N, SCALE, D, 1 )
  588:             CALL DSCAL( N-1, SCALE, E, 1 )
  589:             TNRM = TNRM*SCALE
  590:             IF( VALEIG ) THEN
  591: *              If eigenvalues in interval have to be found,
  592: *              scale (WL, WU] accordingly
  593:                WL = WL*SCALE
  594:                WU = WU*SCALE
  595:             ENDIF
  596:          END IF
  597: *
  598: *        Compute the desired eigenvalues of the tridiagonal after splitting
  599: *        into smaller subblocks if the corresponding off-diagonal elements
  600: *        are small
  601: *        THRESH is the splitting parameter for DLARRE
  602: *        A negative THRESH forces the old splitting criterion based on the
  603: *        size of the off-diagonal. A positive THRESH switches to splitting
  604: *        which preserves relative accuracy.
  605: *
  606:          IF( TRYRAC ) THEN
  607: *           Test whether the matrix warrants the more expensive relative approach.
  608:             CALL DLARRR( N, D, E, IINFO )
  609:          ELSE
  610: *           The user does not care about relative accurately eigenvalues
  611:             IINFO = -1
  612:          ENDIF
  613: *        Set the splitting criterion
  614:          IF (IINFO.EQ.0) THEN
  615:             THRESH = EPS
  616:          ELSE
  617:             THRESH = -EPS
  618: *           relative accuracy is desired but T does not guarantee it
  619:             TRYRAC = .FALSE.
  620:          ENDIF
  621: *
  622:          IF( TRYRAC ) THEN
  623: *           Copy original diagonal, needed to guarantee relative accuracy
  624:             CALL DCOPY(N,D,1,WORK(INDD),1)
  625:          ENDIF
  626: *        Store the squares of the offdiagonal values of T
  627:          DO 5 J = 1, N-1
  628:             WORK( INDE2+J-1 ) = E(J)**2
  629:  5       CONTINUE
  630: 
  631: *        Set the tolerance parameters for bisection
  632:          IF( .NOT.WANTZ ) THEN
  633: *           DLARRE computes the eigenvalues to full precision.
  634:             RTOL1 = FOUR * EPS
  635:             RTOL2 = FOUR * EPS
  636:          ELSE
  637: *           DLARRE computes the eigenvalues to less than full precision.
  638: *           DLARRV will refine the eigenvalue approximations, and we can
  639: *           need less accurate initial bisection in DLARRE.
  640: *           Note: these settings do only affect the subset case and DLARRE
  641:             RTOL1 = SQRT(EPS)
  642:             RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
  643:          ENDIF
  644:          CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
  645:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
  646:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
  647:      $             WORK( INDGP ), IWORK( IINDBL ),
  648:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
  649:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  650:          IF( IINFO.NE.0 ) THEN
  651:             INFO = 10 + ABS( IINFO )
  652:             RETURN
  653:          END IF
  654: *        Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
  655: *        part of the spectrum. All desired eigenvalues are contained in
  656: *        (WL,WU]
  657: 
  658: 
  659:          IF( WANTZ ) THEN
  660: *
  661: *           Compute the desired eigenvectors corresponding to the computed
  662: *           eigenvalues
  663: *
  664:             CALL DLARRV( N, WL, WU, D, E,
  665:      $                PIVMIN, IWORK( IINSPL ), M,
  666:      $                1, M, MINRGP, RTOL1, RTOL2,
  667:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
  668:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
  669:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
  670:             IF( IINFO.NE.0 ) THEN
  671:                INFO = 20 + ABS( IINFO )
  672:                RETURN
  673:             END IF
  674:          ELSE
  675: *           DLARRE computes eigenvalues of the (shifted) root representation
  676: *           DLARRV returns the eigenvalues of the unshifted matrix.
  677: *           However, if the eigenvectors are not desired by the user, we need
  678: *           to apply the corresponding shifts from DLARRE to obtain the
  679: *           eigenvalues of the original matrix.
  680:             DO 20 J = 1, M
  681:                ITMP = IWORK( IINDBL+J-1 )
  682:                W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
  683:  20         CONTINUE
  684:          END IF
  685: *
  686: 
  687:          IF ( TRYRAC ) THEN
  688: *           Refine computed eigenvalues so that they are relatively accurate
  689: *           with respect to the original matrix T.
  690:             IBEGIN = 1
  691:             WBEGIN = 1
  692:             DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
  693:                IEND = IWORK( IINSPL+JBLK-1 )
  694:                IN = IEND - IBEGIN + 1
  695:                WEND = WBEGIN - 1
  696: *              check if any eigenvalues have to be refined in this block
  697:  36            CONTINUE
  698:                IF( WEND.LT.M ) THEN
  699:                   IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
  700:                      WEND = WEND + 1
  701:                      GO TO 36
  702:                   END IF
  703:                END IF
  704:                IF( WEND.LT.WBEGIN ) THEN
  705:                   IBEGIN = IEND + 1
  706:                   GO TO 39
  707:                END IF
  708: 
  709:                OFFSET = IWORK(IINDW+WBEGIN-1)-1
  710:                IFIRST = IWORK(IINDW+WBEGIN-1)
  711:                ILAST = IWORK(IINDW+WEND-1)
  712:                RTOL2 = FOUR * EPS
  713:                CALL DLARRJ( IN,
  714:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
  715:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
  716:      $                   WORK( INDERR+WBEGIN-1 ),
  717:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
  718:      $                   TNRM, IINFO )
  719:                IBEGIN = IEND + 1
  720:                WBEGIN = WEND + 1
  721:  39         CONTINUE
  722:          ENDIF
  723: *
  724: *        If matrix was scaled, then rescale eigenvalues appropriately.
  725: *
  726:          IF( SCALE.NE.ONE ) THEN
  727:             CALL DSCAL( M, ONE / SCALE, W, 1 )
  728:          END IF
  729:   
  730:       END IF
  731:     
  732: *
  733: *     If eigenvalues are not in increasing order, then sort them,
  734: *     possibly along with eigenvectors.
  735: *
  736:       IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
  737:          IF( .NOT. WANTZ ) THEN
  738:             CALL DLASRT( 'I', M, W, IINFO )
  739:             IF( IINFO.NE.0 ) THEN
  740:                INFO = 3
  741:                RETURN
  742:             END IF
  743:          ELSE
  744:             DO 60 J = 1, M - 1
  745:                I = 0
  746:                TMP = W( J )
  747:                DO 50 JJ = J + 1, M
  748:                   IF( W( JJ ).LT.TMP ) THEN
  749:                      I = JJ
  750:                      TMP = W( JJ )
  751:                   END IF
  752:  50            CONTINUE
  753:                IF( I.NE.0 ) THEN
  754:                   W( I ) = W( J )
  755:                   W( J ) = TMP
  756:                   IF( WANTZ ) THEN
  757:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  758:                      ITMP = ISUPPZ( 2*I-1 )
  759:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
  760:                      ISUPPZ( 2*J-1 ) = ITMP
  761:                      ITMP = ISUPPZ( 2*I )
  762:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
  763:                      ISUPPZ( 2*J ) = ITMP
  764:                   END IF
  765:                END IF
  766:  60         CONTINUE
  767:          END IF
  768:       ENDIF
  769: *
  770: *
  771:       WORK( 1 ) = LWMIN
  772:       IWORK( 1 ) = LIWMIN
  773:       RETURN
  774: *
  775: *     End of DSTEMR
  776: *
  777:       END

CVSweb interface <joel.bertrand@systella.fr>