Annotation of rpl/lapack/lapack/dstemr.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
                      2:      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
                      3:      $                   IWORK, LIWORK, INFO )
                      4:       IMPLICIT NONE
                      5: *
                      6: *  -- LAPACK computational routine (version 3.2.1)                                  --
                      7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      9: *  -- April 2009                                                      --
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          JOBZ, RANGE
                     13:       LOGICAL            TRYRAC
                     14:       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
                     15:       DOUBLE PRECISION VL, VU
                     16: *     ..
                     17: *     .. Array Arguments ..
                     18:       INTEGER            ISUPPZ( * ), IWORK( * )
                     19:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
                     20:       DOUBLE PRECISION   Z( LDZ, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  DSTEMR computes selected eigenvalues and, optionally, eigenvectors
                     27: *  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
                     28: *  a well defined set of pairwise different real eigenvalues, the corresponding
                     29: *  real eigenvectors are pairwise orthogonal.
                     30: *
                     31: *  The spectrum may be computed either completely or partially by specifying
                     32: *  either an interval (VL,VU] or a range of indices IL:IU for the desired
                     33: *  eigenvalues.
                     34: *
                     35: *  Depending on the number of desired eigenvalues, these are computed either
                     36: *  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
                     37: *  computed by the use of various suitable L D L^T factorizations near clusters
                     38: *  of close eigenvalues (referred to as RRRs, Relatively Robust
                     39: *  Representations). An informal sketch of the algorithm follows.
                     40: *
                     41: *  For each unreduced block (submatrix) of T,
                     42: *     (a) Compute T - sigma I  = L D L^T, so that L and D
                     43: *         define all the wanted eigenvalues to high relative accuracy.
                     44: *         This means that small relative changes in the entries of D and L
                     45: *         cause only small relative changes in the eigenvalues and
                     46: *         eigenvectors. The standard (unfactored) representation of the
                     47: *         tridiagonal matrix T does not have this property in general.
                     48: *     (b) Compute the eigenvalues to suitable accuracy.
                     49: *         If the eigenvectors are desired, the algorithm attains full
                     50: *         accuracy of the computed eigenvalues only right before
                     51: *         the corresponding vectors have to be computed, see steps c) and d).
                     52: *     (c) For each cluster of close eigenvalues, select a new
                     53: *         shift close to the cluster, find a new factorization, and refine
                     54: *         the shifted eigenvalues to suitable accuracy.
                     55: *     (d) For each eigenvalue with a large enough relative separation compute
                     56: *         the corresponding eigenvector by forming a rank revealing twisted
                     57: *         factorization. Go back to (c) for any clusters that remain.
                     58: *
                     59: *  For more details, see:
                     60: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
                     61: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
                     62: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
                     63: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
                     64: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
                     65: *    2004.  Also LAPACK Working Note 154.
                     66: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
                     67: *    tridiagonal eigenvalue/eigenvector problem",
                     68: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
                     69: *    UC Berkeley, May 1997.
                     70: *
                     71: *  Further Details
                     72: *  1.DSTEMR works only on machines which follow IEEE-754
                     73: *  floating-point standard in their handling of infinities and NaNs.
                     74: *  This permits the use of efficient inner loops avoiding a check for
                     75: *  zero divisors.
                     76: *
                     77: *  Arguments
                     78: *  =========
                     79: *
                     80: *  JOBZ    (input) CHARACTER*1
                     81: *          = 'N':  Compute eigenvalues only;
                     82: *          = 'V':  Compute eigenvalues and eigenvectors.
                     83: *
                     84: *  RANGE   (input) CHARACTER*1
                     85: *          = 'A': all eigenvalues will be found.
                     86: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     87: *                 will be found.
                     88: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     89: *
                     90: *  N       (input) INTEGER
                     91: *          The order of the matrix.  N >= 0.
                     92: *
                     93: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     94: *          On entry, the N diagonal elements of the tridiagonal matrix
                     95: *          T. On exit, D is overwritten.
                     96: *
                     97: *  E       (input/output) DOUBLE PRECISION array, dimension (N)
                     98: *          On entry, the (N-1) subdiagonal elements of the tridiagonal
                     99: *          matrix T in elements 1 to N-1 of E. E(N) need not be set on
                    100: *          input, but is used internally as workspace.
                    101: *          On exit, E is overwritten.
                    102: *
                    103: *  VL      (input) DOUBLE PRECISION
                    104: *  VU      (input) DOUBLE PRECISION
                    105: *          If RANGE='V', the lower and upper bounds of the interval to
                    106: *          be searched for eigenvalues. VL < VU.
                    107: *          Not referenced if RANGE = 'A' or 'I'.
                    108: *
                    109: *  IL      (input) INTEGER
                    110: *  IU      (input) INTEGER
                    111: *          If RANGE='I', the indices (in ascending order) of the
                    112: *          smallest and largest eigenvalues to be returned.
                    113: *          1 <= IL <= IU <= N, if N > 0.
                    114: *          Not referenced if RANGE = 'A' or 'V'.
                    115: *
                    116: *  M       (output) INTEGER
                    117: *          The total number of eigenvalues found.  0 <= M <= N.
                    118: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    119: *
                    120: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    121: *          The first M elements contain the selected eigenvalues in
                    122: *          ascending order.
                    123: *
                    124: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
                    125: *          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
                    126: *          contain the orthonormal eigenvectors of the matrix T
                    127: *          corresponding to the selected eigenvalues, with the i-th
                    128: *          column of Z holding the eigenvector associated with W(i).
                    129: *          If JOBZ = 'N', then Z is not referenced.
                    130: *          Note: the user must ensure that at least max(1,M) columns are
                    131: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    132: *          is not known in advance and can be computed with a workspace
                    133: *          query by setting NZC = -1, see below.
                    134: *
                    135: *  LDZ     (input) INTEGER
                    136: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    137: *          JOBZ = 'V', then LDZ >= max(1,N).
                    138: *
                    139: *  NZC     (input) INTEGER
                    140: *          The number of eigenvectors to be held in the array Z.
                    141: *          If RANGE = 'A', then NZC >= max(1,N).
                    142: *          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
                    143: *          If RANGE = 'I', then NZC >= IU-IL+1.
                    144: *          If NZC = -1, then a workspace query is assumed; the
                    145: *          routine calculates the number of columns of the array Z that
                    146: *          are needed to hold the eigenvectors.
                    147: *          This value is returned as the first entry of the Z array, and
                    148: *          no error message related to NZC is issued by XERBLA.
                    149: *
                    150: *  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
                    151: *          The support of the eigenvectors in Z, i.e., the indices
                    152: *          indicating the nonzero elements in Z. The i-th computed eigenvector
                    153: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    154: *          ISUPPZ( 2*i ). This is relevant in the case when the matrix
                    155: *          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
                    156: *
                    157: *  TRYRAC  (input/output) LOGICAL
                    158: *          If TRYRAC.EQ..TRUE., indicates that the code should check whether
                    159: *          the tridiagonal matrix defines its eigenvalues to high relative
                    160: *          accuracy.  If so, the code uses relative-accuracy preserving
                    161: *          algorithms that might be (a bit) slower depending on the matrix.
                    162: *          If the matrix does not define its eigenvalues to high relative
                    163: *          accuracy, the code can uses possibly faster algorithms.
                    164: *          If TRYRAC.EQ..FALSE., the code is not required to guarantee
                    165: *          relatively accurate eigenvalues and can use the fastest possible
                    166: *          techniques.
                    167: *          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
                    168: *          does not define its eigenvalues to high relative accuracy.
                    169: *
                    170: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
                    171: *          On exit, if INFO = 0, WORK(1) returns the optimal
                    172: *          (and minimal) LWORK.
                    173: *
                    174: *  LWORK   (input) INTEGER
                    175: *          The dimension of the array WORK. LWORK >= max(1,18*N)
                    176: *          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
                    177: *          If LWORK = -1, then a workspace query is assumed; the routine
                    178: *          only calculates the optimal size of the WORK array, returns
                    179: *          this value as the first entry of the WORK array, and no error
                    180: *          message related to LWORK is issued by XERBLA.
                    181: *
                    182: *  IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
                    183: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    184: *
                    185: *  LIWORK  (input) INTEGER
                    186: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
                    187: *          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
                    188: *          if only the eigenvalues are to be computed.
                    189: *          If LIWORK = -1, then a workspace query is assumed; the
                    190: *          routine only calculates the optimal size of the IWORK array,
                    191: *          returns this value as the first entry of the IWORK array, and
                    192: *          no error message related to LIWORK is issued by XERBLA.
                    193: *
                    194: *  INFO    (output) INTEGER
                    195: *          On exit, INFO
                    196: *          = 0:  successful exit
                    197: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    198: *          > 0:  if INFO = 1X, internal error in DLARRE,
                    199: *                if INFO = 2X, internal error in DLARRV.
                    200: *                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
                    201: *                the nonzero error code returned by DLARRE or
                    202: *                DLARRV, respectively.
                    203: *
                    204: *
                    205: *  Further Details
                    206: *  ===============
                    207: *
                    208: *  Based on contributions by
                    209: *     Beresford Parlett, University of California, Berkeley, USA
                    210: *     Jim Demmel, University of California, Berkeley, USA
                    211: *     Inderjit Dhillon, University of Texas, Austin, USA
                    212: *     Osni Marques, LBNL/NERSC, USA
                    213: *     Christof Voemel, University of California, Berkeley, USA
                    214: *
                    215: *  =====================================================================
                    216: *
                    217: *     .. Parameters ..
                    218:       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
                    219:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
                    220:      $                     FOUR = 4.0D0,
                    221:      $                     MINRGP = 1.0D-3 )
                    222: *     ..
                    223: *     .. Local Scalars ..
                    224:       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
                    225:       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
                    226:      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
                    227:      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
                    228:      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
                    229:      $                   NZCMIN, OFFSET, WBEGIN, WEND
                    230:       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
                    231:      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
                    232:      $                   THRESH, TMP, TNRM, WL, WU
                    233: *     ..
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       LOGICAL            LSAME
                    237:       DOUBLE PRECISION   DLAMCH, DLANST
                    238:       EXTERNAL           LSAME, DLAMCH, DLANST
                    239: *     ..
                    240: *     .. External Subroutines ..
                    241:       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
                    242:      $                   DLARRR, DLARRV, DLASRT, DSCAL, DSWAP, XERBLA
                    243: *     ..
                    244: *     .. Intrinsic Functions ..
                    245:       INTRINSIC          MAX, MIN, SQRT
                    246: 
                    247: 
                    248: *     ..
                    249: *     .. Executable Statements ..
                    250: *
                    251: *     Test the input parameters.
                    252: *
                    253:       WANTZ = LSAME( JOBZ, 'V' )
                    254:       ALLEIG = LSAME( RANGE, 'A' )
                    255:       VALEIG = LSAME( RANGE, 'V' )
                    256:       INDEIG = LSAME( RANGE, 'I' )
                    257: *
                    258:       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
                    259:       ZQUERY = ( NZC.EQ.-1 )
                    260: 
                    261: *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
                    262: *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
                    263: *     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N.
                    264:       IF( WANTZ ) THEN
                    265:          LWMIN = 18*N
                    266:          LIWMIN = 10*N
                    267:       ELSE
                    268: *        need less workspace if only the eigenvalues are wanted
                    269:          LWMIN = 12*N
                    270:          LIWMIN = 8*N
                    271:       ENDIF
                    272: 
                    273:       WL = ZERO
                    274:       WU = ZERO
                    275:       IIL = 0
                    276:       IIU = 0
                    277: 
                    278:       IF( VALEIG ) THEN
                    279: *        We do not reference VL, VU in the cases RANGE = 'I','A'
                    280: *        The interval (WL, WU] contains all the wanted eigenvalues.
                    281: *        It is either given by the user or computed in DLARRE.
                    282:          WL = VL
                    283:          WU = VU
                    284:       ELSEIF( INDEIG ) THEN
                    285: *        We do not reference IL, IU in the cases RANGE = 'V','A'
                    286:          IIL = IL
                    287:          IIU = IU
                    288:       ENDIF
                    289: *
                    290:       INFO = 0
                    291:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    292:          INFO = -1
                    293:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    294:          INFO = -2
                    295:       ELSE IF( N.LT.0 ) THEN
                    296:          INFO = -3
                    297:       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
                    298:          INFO = -7
                    299:       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
                    300:          INFO = -8
                    301:       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
                    302:          INFO = -9
                    303:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    304:          INFO = -13
                    305:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    306:          INFO = -17
                    307:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    308:          INFO = -19
                    309:       END IF
                    310: *
                    311: *     Get machine constants.
                    312: *
                    313:       SAFMIN = DLAMCH( 'Safe minimum' )
                    314:       EPS = DLAMCH( 'Precision' )
                    315:       SMLNUM = SAFMIN / EPS
                    316:       BIGNUM = ONE / SMLNUM
                    317:       RMIN = SQRT( SMLNUM )
                    318:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    319: *
                    320:       IF( INFO.EQ.0 ) THEN
                    321:          WORK( 1 ) = LWMIN
                    322:          IWORK( 1 ) = LIWMIN
                    323: *
                    324:          IF( WANTZ .AND. ALLEIG ) THEN
                    325:             NZCMIN = N
                    326:          ELSE IF( WANTZ .AND. VALEIG ) THEN
                    327:             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
                    328:      $                            NZCMIN, ITMP, ITMP2, INFO )
                    329:          ELSE IF( WANTZ .AND. INDEIG ) THEN
                    330:             NZCMIN = IIU-IIL+1
                    331:          ELSE
                    332: *           WANTZ .EQ. FALSE.
                    333:             NZCMIN = 0
                    334:          ENDIF
                    335:          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
                    336:             Z( 1,1 ) = NZCMIN
                    337:          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
                    338:             INFO = -14
                    339:          END IF
                    340:       END IF
                    341: 
                    342:       IF( INFO.NE.0 ) THEN
                    343: *
                    344:          CALL XERBLA( 'DSTEMR', -INFO )
                    345: *
                    346:          RETURN
                    347:       ELSE IF( LQUERY .OR. ZQUERY ) THEN
                    348:          RETURN
                    349:       END IF
                    350: *
                    351: *     Handle N = 0, 1, and 2 cases immediately
                    352: *
                    353:       M = 0
                    354:       IF( N.EQ.0 )
                    355:      $   RETURN
                    356: *
                    357:       IF( N.EQ.1 ) THEN
                    358:          IF( ALLEIG .OR. INDEIG ) THEN
                    359:             M = 1
                    360:             W( 1 ) = D( 1 )
                    361:          ELSE
                    362:             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
                    363:                M = 1
                    364:                W( 1 ) = D( 1 )
                    365:             END IF
                    366:          END IF
                    367:          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    368:             Z( 1, 1 ) = ONE
                    369:             ISUPPZ(1) = 1
                    370:             ISUPPZ(2) = 1
                    371:          END IF
                    372:          RETURN
                    373:       END IF
                    374: *
                    375:       IF( N.EQ.2 ) THEN
                    376:          IF( .NOT.WANTZ ) THEN
                    377:             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
                    378:          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    379:             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
                    380:          END IF
                    381:          IF( ALLEIG.OR.
                    382:      $      (VALEIG.AND.(R2.GT.WL).AND.
                    383:      $                  (R2.LE.WU)).OR.
                    384:      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
                    385:             M = M+1
                    386:             W( M ) = R2
                    387:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    388:                Z( 1, M ) = -SN
                    389:                Z( 2, M ) = CS
                    390: *              Note: At most one of SN and CS can be zero.
                    391:                IF (SN.NE.ZERO) THEN
                    392:                   IF (CS.NE.ZERO) THEN
                    393:                      ISUPPZ(2*M-1) = 1
                    394:                      ISUPPZ(2*M-1) = 2
                    395:                   ELSE
                    396:                      ISUPPZ(2*M-1) = 1
                    397:                      ISUPPZ(2*M-1) = 1
                    398:                   END IF
                    399:                ELSE
                    400:                   ISUPPZ(2*M-1) = 2
                    401:                   ISUPPZ(2*M) = 2
                    402:                END IF
                    403:             ENDIF
                    404:          ENDIF
                    405:          IF( ALLEIG.OR.
                    406:      $      (VALEIG.AND.(R1.GT.WL).AND.
                    407:      $                  (R1.LE.WU)).OR.
                    408:      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
                    409:             M = M+1
                    410:             W( M ) = R1
                    411:             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
                    412:                Z( 1, M ) = CS
                    413:                Z( 2, M ) = SN
                    414: *              Note: At most one of SN and CS can be zero.
                    415:                IF (SN.NE.ZERO) THEN
                    416:                   IF (CS.NE.ZERO) THEN
                    417:                      ISUPPZ(2*M-1) = 1
                    418:                      ISUPPZ(2*M-1) = 2
                    419:                   ELSE
                    420:                      ISUPPZ(2*M-1) = 1
                    421:                      ISUPPZ(2*M-1) = 1
                    422:                   END IF
                    423:                ELSE
                    424:                   ISUPPZ(2*M-1) = 2
                    425:                   ISUPPZ(2*M) = 2
                    426:                END IF
                    427:             ENDIF
                    428:          ENDIF
                    429:          RETURN
                    430:       END IF
                    431: 
                    432: *     Continue with general N
                    433: 
                    434:       INDGRS = 1
                    435:       INDERR = 2*N + 1
                    436:       INDGP = 3*N + 1
                    437:       INDD = 4*N + 1
                    438:       INDE2 = 5*N + 1
                    439:       INDWRK = 6*N + 1
                    440: *
                    441:       IINSPL = 1
                    442:       IINDBL = N + 1
                    443:       IINDW = 2*N + 1
                    444:       IINDWK = 3*N + 1
                    445: *
                    446: *     Scale matrix to allowable range, if necessary.
                    447: *     The allowable range is related to the PIVMIN parameter; see the
                    448: *     comments in DLARRD.  The preference for scaling small values
                    449: *     up is heuristic; we expect users' matrices not to be close to the
                    450: *     RMAX threshold.
                    451: *
                    452:       SCALE = ONE
                    453:       TNRM = DLANST( 'M', N, D, E )
                    454:       IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
                    455:          SCALE = RMIN / TNRM
                    456:       ELSE IF( TNRM.GT.RMAX ) THEN
                    457:          SCALE = RMAX / TNRM
                    458:       END IF
                    459:       IF( SCALE.NE.ONE ) THEN
                    460:          CALL DSCAL( N, SCALE, D, 1 )
                    461:          CALL DSCAL( N-1, SCALE, E, 1 )
                    462:          TNRM = TNRM*SCALE
                    463:          IF( VALEIG ) THEN
                    464: *           If eigenvalues in interval have to be found,
                    465: *           scale (WL, WU] accordingly
                    466:             WL = WL*SCALE
                    467:             WU = WU*SCALE
                    468:          ENDIF
                    469:       END IF
                    470: *
                    471: *     Compute the desired eigenvalues of the tridiagonal after splitting
                    472: *     into smaller subblocks if the corresponding off-diagonal elements
                    473: *     are small
                    474: *     THRESH is the splitting parameter for DLARRE
                    475: *     A negative THRESH forces the old splitting criterion based on the
                    476: *     size of the off-diagonal. A positive THRESH switches to splitting
                    477: *     which preserves relative accuracy.
                    478: *
                    479:       IF( TRYRAC ) THEN
                    480: *        Test whether the matrix warrants the more expensive relative approach.
                    481:          CALL DLARRR( N, D, E, IINFO )
                    482:       ELSE
                    483: *        The user does not care about relative accurately eigenvalues
                    484:          IINFO = -1
                    485:       ENDIF
                    486: *     Set the splitting criterion
                    487:       IF (IINFO.EQ.0) THEN
                    488:          THRESH = EPS
                    489:       ELSE
                    490:          THRESH = -EPS
                    491: *        relative accuracy is desired but T does not guarantee it
                    492:          TRYRAC = .FALSE.
                    493:       ENDIF
                    494: *
                    495:       IF( TRYRAC ) THEN
                    496: *        Copy original diagonal, needed to guarantee relative accuracy
                    497:          CALL DCOPY(N,D,1,WORK(INDD),1)
                    498:       ENDIF
                    499: *     Store the squares of the offdiagonal values of T
                    500:       DO 5 J = 1, N-1
                    501:          WORK( INDE2+J-1 ) = E(J)**2
                    502:  5    CONTINUE
                    503: 
                    504: *     Set the tolerance parameters for bisection
                    505:       IF( .NOT.WANTZ ) THEN
                    506: *        DLARRE computes the eigenvalues to full precision.
                    507:          RTOL1 = FOUR * EPS
                    508:          RTOL2 = FOUR * EPS
                    509:       ELSE
                    510: *        DLARRE computes the eigenvalues to less than full precision.
                    511: *        DLARRV will refine the eigenvalue approximations, and we can
                    512: *        need less accurate initial bisection in DLARRE.
                    513: *        Note: these settings do only affect the subset case and DLARRE
                    514:          RTOL1 = SQRT(EPS)
                    515:          RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
                    516:       ENDIF
                    517:       CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
                    518:      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
                    519:      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
                    520:      $             WORK( INDGP ), IWORK( IINDBL ),
                    521:      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
                    522:      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    523:       IF( IINFO.NE.0 ) THEN
                    524:          INFO = 10 + ABS( IINFO )
                    525:          RETURN
                    526:       END IF
                    527: *     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
                    528: *     part of the spectrum. All desired eigenvalues are contained in
                    529: *     (WL,WU]
                    530: 
                    531: 
                    532:       IF( WANTZ ) THEN
                    533: *
                    534: *        Compute the desired eigenvectors corresponding to the computed
                    535: *        eigenvalues
                    536: *
                    537:          CALL DLARRV( N, WL, WU, D, E,
                    538:      $                PIVMIN, IWORK( IINSPL ), M,
                    539:      $                1, M, MINRGP, RTOL1, RTOL2,
                    540:      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
                    541:      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
                    542:      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
                    543:          IF( IINFO.NE.0 ) THEN
                    544:             INFO = 20 + ABS( IINFO )
                    545:             RETURN
                    546:          END IF
                    547:       ELSE
                    548: *        DLARRE computes eigenvalues of the (shifted) root representation
                    549: *        DLARRV returns the eigenvalues of the unshifted matrix.
                    550: *        However, if the eigenvectors are not desired by the user, we need
                    551: *        to apply the corresponding shifts from DLARRE to obtain the
                    552: *        eigenvalues of the original matrix.
                    553:          DO 20 J = 1, M
                    554:             ITMP = IWORK( IINDBL+J-1 )
                    555:             W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
                    556:  20      CONTINUE
                    557:       END IF
                    558: *
                    559: 
                    560:       IF ( TRYRAC ) THEN
                    561: *        Refine computed eigenvalues so that they are relatively accurate
                    562: *        with respect to the original matrix T.
                    563:          IBEGIN = 1
                    564:          WBEGIN = 1
                    565:          DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
                    566:             IEND = IWORK( IINSPL+JBLK-1 )
                    567:             IN = IEND - IBEGIN + 1
                    568:             WEND = WBEGIN - 1
                    569: *           check if any eigenvalues have to be refined in this block
                    570:  36         CONTINUE
                    571:             IF( WEND.LT.M ) THEN
                    572:                IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
                    573:                   WEND = WEND + 1
                    574:                   GO TO 36
                    575:                END IF
                    576:             END IF
                    577:             IF( WEND.LT.WBEGIN ) THEN
                    578:                IBEGIN = IEND + 1
                    579:                GO TO 39
                    580:             END IF
                    581: 
                    582:             OFFSET = IWORK(IINDW+WBEGIN-1)-1
                    583:             IFIRST = IWORK(IINDW+WBEGIN-1)
                    584:             ILAST = IWORK(IINDW+WEND-1)
                    585:             RTOL2 = FOUR * EPS
                    586:             CALL DLARRJ( IN,
                    587:      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
                    588:      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
                    589:      $                   WORK( INDERR+WBEGIN-1 ),
                    590:      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
                    591:      $                   TNRM, IINFO )
                    592:             IBEGIN = IEND + 1
                    593:             WBEGIN = WEND + 1
                    594:  39      CONTINUE
                    595:       ENDIF
                    596: *
                    597: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    598: *
                    599:       IF( SCALE.NE.ONE ) THEN
                    600:          CALL DSCAL( M, ONE / SCALE, W, 1 )
                    601:       END IF
                    602: *
                    603: *     If eigenvalues are not in increasing order, then sort them,
                    604: *     possibly along with eigenvectors.
                    605: *
                    606:       IF( NSPLIT.GT.1 ) THEN
                    607:          IF( .NOT. WANTZ ) THEN
                    608:             CALL DLASRT( 'I', M, W, IINFO )
                    609:             IF( IINFO.NE.0 ) THEN
                    610:                INFO = 3
                    611:                RETURN
                    612:             END IF
                    613:          ELSE
                    614:             DO 60 J = 1, M - 1
                    615:                I = 0
                    616:                TMP = W( J )
                    617:                DO 50 JJ = J + 1, M
                    618:                   IF( W( JJ ).LT.TMP ) THEN
                    619:                      I = JJ
                    620:                      TMP = W( JJ )
                    621:                   END IF
                    622:  50            CONTINUE
                    623:                IF( I.NE.0 ) THEN
                    624:                   W( I ) = W( J )
                    625:                   W( J ) = TMP
                    626:                   IF( WANTZ ) THEN
                    627:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    628:                      ITMP = ISUPPZ( 2*I-1 )
                    629:                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
                    630:                      ISUPPZ( 2*J-1 ) = ITMP
                    631:                      ITMP = ISUPPZ( 2*I )
                    632:                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
                    633:                      ISUPPZ( 2*J ) = ITMP
                    634:                   END IF
                    635:                END IF
                    636:  60         CONTINUE
                    637:          END IF
                    638:       ENDIF
                    639: *
                    640: *
                    641:       WORK( 1 ) = LWMIN
                    642:       IWORK( 1 ) = LIWMIN
                    643:       RETURN
                    644: *
                    645: *     End of DSTEMR
                    646: *
                    647:       END

CVSweb interface <joel.bertrand@systella.fr>