Annotation of rpl/lapack/lapack/dstein.f, revision 1.10

1.8       bertrand    1: *> \brief \b DSTEIN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSTEIN + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstein.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstein.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstein.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
                     22: *                          IWORK, IFAIL, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDZ, M, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
                     29: *      $                   IWORK( * )
                     30: *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSTEIN computes the eigenvectors of a real symmetric tridiagonal
                     40: *> matrix T corresponding to specified eigenvalues, using inverse
                     41: *> iteration.
                     42: *>
                     43: *> The maximum number of iterations allowed for each eigenvector is
                     44: *> specified by an internal parameter MAXITS (currently set to 5).
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] N
                     51: *> \verbatim
                     52: *>          N is INTEGER
                     53: *>          The order of the matrix.  N >= 0.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] D
                     57: *> \verbatim
                     58: *>          D is DOUBLE PRECISION array, dimension (N)
                     59: *>          The n diagonal elements of the tridiagonal matrix T.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] E
                     63: *> \verbatim
                     64: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     65: *>          The (n-1) subdiagonal elements of the tridiagonal matrix
                     66: *>          T, in elements 1 to N-1.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] M
                     70: *> \verbatim
                     71: *>          M is INTEGER
                     72: *>          The number of eigenvectors to be found.  0 <= M <= N.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] W
                     76: *> \verbatim
                     77: *>          W is DOUBLE PRECISION array, dimension (N)
                     78: *>          The first M elements of W contain the eigenvalues for
                     79: *>          which eigenvectors are to be computed.  The eigenvalues
                     80: *>          should be grouped by split-off block and ordered from
                     81: *>          smallest to largest within the block.  ( The output array
                     82: *>          W from DSTEBZ with ORDER = 'B' is expected here. )
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] IBLOCK
                     86: *> \verbatim
                     87: *>          IBLOCK is INTEGER array, dimension (N)
                     88: *>          The submatrix indices associated with the corresponding
                     89: *>          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
                     90: *>          the first submatrix from the top, =2 if W(i) belongs to
                     91: *>          the second submatrix, etc.  ( The output array IBLOCK
                     92: *>          from DSTEBZ is expected here. )
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] ISPLIT
                     96: *> \verbatim
                     97: *>          ISPLIT is INTEGER array, dimension (N)
                     98: *>          The splitting points, at which T breaks up into submatrices.
                     99: *>          The first submatrix consists of rows/columns 1 to
                    100: *>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
                    101: *>          through ISPLIT( 2 ), etc.
                    102: *>          ( The output array ISPLIT from DSTEBZ is expected here. )
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[out] Z
                    106: *> \verbatim
                    107: *>          Z is DOUBLE PRECISION array, dimension (LDZ, M)
                    108: *>          The computed eigenvectors.  The eigenvector associated
                    109: *>          with the eigenvalue W(i) is stored in the i-th column of
                    110: *>          Z.  Any vector which fails to converge is set to its current
                    111: *>          iterate after MAXITS iterations.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDZ
                    115: *> \verbatim
                    116: *>          LDZ is INTEGER
                    117: *>          The leading dimension of the array Z.  LDZ >= max(1,N).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[out] WORK
                    121: *> \verbatim
                    122: *>          WORK is DOUBLE PRECISION array, dimension (5*N)
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[out] IWORK
                    126: *> \verbatim
                    127: *>          IWORK is INTEGER array, dimension (N)
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] IFAIL
                    131: *> \verbatim
                    132: *>          IFAIL is INTEGER array, dimension (M)
                    133: *>          On normal exit, all elements of IFAIL are zero.
                    134: *>          If one or more eigenvectors fail to converge after
                    135: *>          MAXITS iterations, then their indices are stored in
                    136: *>          array IFAIL.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] INFO
                    140: *> \verbatim
                    141: *>          INFO is INTEGER
                    142: *>          = 0: successful exit.
                    143: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    144: *>          > 0: if INFO = i, then i eigenvectors failed to converge
                    145: *>               in MAXITS iterations.  Their indices are stored in
                    146: *>               array IFAIL.
                    147: *> \endverbatim
                    148: *
                    149: *> \par Internal Parameters:
                    150: *  =========================
                    151: *>
                    152: *> \verbatim
                    153: *>  MAXITS  INTEGER, default = 5
                    154: *>          The maximum number of iterations performed.
                    155: *>
                    156: *>  EXTRA   INTEGER, default = 2
                    157: *>          The number of iterations performed after norm growth
                    158: *>          criterion is satisfied, should be at least 1.
                    159: *> \endverbatim
                    160: *
                    161: *  Authors:
                    162: *  ========
                    163: *
                    164: *> \author Univ. of Tennessee 
                    165: *> \author Univ. of California Berkeley 
                    166: *> \author Univ. of Colorado Denver 
                    167: *> \author NAG Ltd. 
                    168: *
                    169: *> \date November 2011
                    170: *
                    171: *> \ingroup doubleOTHERcomputational
                    172: *
                    173: *  =====================================================================
1.1       bertrand  174:       SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK,
                    175:      $                   IWORK, IFAIL, INFO )
                    176: *
1.8       bertrand  177: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  178: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    179: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  180: *     November 2011
1.1       bertrand  181: *
                    182: *     .. Scalar Arguments ..
                    183:       INTEGER            INFO, LDZ, M, N
                    184: *     ..
                    185: *     .. Array Arguments ..
                    186:       INTEGER            IBLOCK( * ), IFAIL( * ), ISPLIT( * ),
                    187:      $                   IWORK( * )
                    188:       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Parameters ..
                    194:       DOUBLE PRECISION   ZERO, ONE, TEN, ODM3, ODM1
                    195:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
                    196:      $                   ODM3 = 1.0D-3, ODM1 = 1.0D-1 )
                    197:       INTEGER            MAXITS, EXTRA
                    198:       PARAMETER          ( MAXITS = 5, EXTRA = 2 )
                    199: *     ..
                    200: *     .. Local Scalars ..
                    201:       INTEGER            B1, BLKSIZ, BN, GPIND, I, IINFO, INDRV1,
                    202:      $                   INDRV2, INDRV3, INDRV4, INDRV5, ITS, J, J1,
                    203:      $                   JBLK, JMAX, NBLK, NRMCHK
                    204:       DOUBLE PRECISION   DTPCRT, EPS, EPS1, NRM, ONENRM, ORTOL, PERTOL,
                    205:      $                   SCL, SEP, TOL, XJ, XJM, ZTR
                    206: *     ..
                    207: *     .. Local Arrays ..
                    208:       INTEGER            ISEED( 4 )
                    209: *     ..
                    210: *     .. External Functions ..
                    211:       INTEGER            IDAMAX
                    212:       DOUBLE PRECISION   DASUM, DDOT, DLAMCH, DNRM2
                    213:       EXTERNAL           IDAMAX, DASUM, DDOT, DLAMCH, DNRM2
                    214: *     ..
                    215: *     .. External Subroutines ..
                    216:       EXTERNAL           DAXPY, DCOPY, DLAGTF, DLAGTS, DLARNV, DSCAL,
                    217:      $                   XERBLA
                    218: *     ..
                    219: *     .. Intrinsic Functions ..
                    220:       INTRINSIC          ABS, MAX, SQRT
                    221: *     ..
                    222: *     .. Executable Statements ..
                    223: *
                    224: *     Test the input parameters.
                    225: *
                    226:       INFO = 0
                    227:       DO 10 I = 1, M
                    228:          IFAIL( I ) = 0
                    229:    10 CONTINUE
                    230: *
                    231:       IF( N.LT.0 ) THEN
                    232:          INFO = -1
                    233:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
                    234:          INFO = -4
                    235:       ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
                    236:          INFO = -9
                    237:       ELSE
                    238:          DO 20 J = 2, M
                    239:             IF( IBLOCK( J ).LT.IBLOCK( J-1 ) ) THEN
                    240:                INFO = -6
                    241:                GO TO 30
                    242:             END IF
                    243:             IF( IBLOCK( J ).EQ.IBLOCK( J-1 ) .AND. W( J ).LT.W( J-1 ) )
                    244:      $           THEN
                    245:                INFO = -5
                    246:                GO TO 30
                    247:             END IF
                    248:    20    CONTINUE
                    249:    30    CONTINUE
                    250:       END IF
                    251: *
                    252:       IF( INFO.NE.0 ) THEN
                    253:          CALL XERBLA( 'DSTEIN', -INFO )
                    254:          RETURN
                    255:       END IF
                    256: *
                    257: *     Quick return if possible
                    258: *
                    259:       IF( N.EQ.0 .OR. M.EQ.0 ) THEN
                    260:          RETURN
                    261:       ELSE IF( N.EQ.1 ) THEN
                    262:          Z( 1, 1 ) = ONE
                    263:          RETURN
                    264:       END IF
                    265: *
                    266: *     Get machine constants.
                    267: *
                    268:       EPS = DLAMCH( 'Precision' )
                    269: *
                    270: *     Initialize seed for random number generator DLARNV.
                    271: *
                    272:       DO 40 I = 1, 4
                    273:          ISEED( I ) = 1
                    274:    40 CONTINUE
                    275: *
                    276: *     Initialize pointers.
                    277: *
                    278:       INDRV1 = 0
                    279:       INDRV2 = INDRV1 + N
                    280:       INDRV3 = INDRV2 + N
                    281:       INDRV4 = INDRV3 + N
                    282:       INDRV5 = INDRV4 + N
                    283: *
                    284: *     Compute eigenvectors of matrix blocks.
                    285: *
                    286:       J1 = 1
                    287:       DO 160 NBLK = 1, IBLOCK( M )
                    288: *
                    289: *        Find starting and ending indices of block nblk.
                    290: *
                    291:          IF( NBLK.EQ.1 ) THEN
                    292:             B1 = 1
                    293:          ELSE
                    294:             B1 = ISPLIT( NBLK-1 ) + 1
                    295:          END IF
                    296:          BN = ISPLIT( NBLK )
                    297:          BLKSIZ = BN - B1 + 1
                    298:          IF( BLKSIZ.EQ.1 )
                    299:      $      GO TO 60
                    300:          GPIND = B1
                    301: *
                    302: *        Compute reorthogonalization criterion and stopping criterion.
                    303: *
                    304:          ONENRM = ABS( D( B1 ) ) + ABS( E( B1 ) )
                    305:          ONENRM = MAX( ONENRM, ABS( D( BN ) )+ABS( E( BN-1 ) ) )
                    306:          DO 50 I = B1 + 1, BN - 1
                    307:             ONENRM = MAX( ONENRM, ABS( D( I ) )+ABS( E( I-1 ) )+
                    308:      $               ABS( E( I ) ) )
                    309:    50    CONTINUE
                    310:          ORTOL = ODM3*ONENRM
                    311: *
                    312:          DTPCRT = SQRT( ODM1 / BLKSIZ )
                    313: *
                    314: *        Loop through eigenvalues of block nblk.
                    315: *
                    316:    60    CONTINUE
                    317:          JBLK = 0
                    318:          DO 150 J = J1, M
                    319:             IF( IBLOCK( J ).NE.NBLK ) THEN
                    320:                J1 = J
                    321:                GO TO 160
                    322:             END IF
                    323:             JBLK = JBLK + 1
                    324:             XJ = W( J )
                    325: *
                    326: *           Skip all the work if the block size is one.
                    327: *
                    328:             IF( BLKSIZ.EQ.1 ) THEN
                    329:                WORK( INDRV1+1 ) = ONE
                    330:                GO TO 120
                    331:             END IF
                    332: *
                    333: *           If eigenvalues j and j-1 are too close, add a relatively
                    334: *           small perturbation.
                    335: *
                    336:             IF( JBLK.GT.1 ) THEN
                    337:                EPS1 = ABS( EPS*XJ )
                    338:                PERTOL = TEN*EPS1
                    339:                SEP = XJ - XJM
                    340:                IF( SEP.LT.PERTOL )
                    341:      $            XJ = XJM + PERTOL
                    342:             END IF
                    343: *
                    344:             ITS = 0
                    345:             NRMCHK = 0
                    346: *
                    347: *           Get random starting vector.
                    348: *
                    349:             CALL DLARNV( 2, ISEED, BLKSIZ, WORK( INDRV1+1 ) )
                    350: *
                    351: *           Copy the matrix T so it won't be destroyed in factorization.
                    352: *
                    353:             CALL DCOPY( BLKSIZ, D( B1 ), 1, WORK( INDRV4+1 ), 1 )
                    354:             CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV2+2 ), 1 )
                    355:             CALL DCOPY( BLKSIZ-1, E( B1 ), 1, WORK( INDRV3+1 ), 1 )
                    356: *
                    357: *           Compute LU factors with partial pivoting  ( PT = LU )
                    358: *
                    359:             TOL = ZERO
                    360:             CALL DLAGTF( BLKSIZ, WORK( INDRV4+1 ), XJ, WORK( INDRV2+2 ),
                    361:      $                   WORK( INDRV3+1 ), TOL, WORK( INDRV5+1 ), IWORK,
                    362:      $                   IINFO )
                    363: *
                    364: *           Update iteration count.
                    365: *
                    366:    70       CONTINUE
                    367:             ITS = ITS + 1
                    368:             IF( ITS.GT.MAXITS )
                    369:      $         GO TO 100
                    370: *
                    371: *           Normalize and scale the righthand side vector Pb.
                    372: *
                    373:             SCL = BLKSIZ*ONENRM*MAX( EPS,
                    374:      $            ABS( WORK( INDRV4+BLKSIZ ) ) ) /
                    375:      $            DASUM( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    376:             CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
                    377: *
                    378: *           Solve the system LU = Pb.
                    379: *
                    380:             CALL DLAGTS( -1, BLKSIZ, WORK( INDRV4+1 ), WORK( INDRV2+2 ),
                    381:      $                   WORK( INDRV3+1 ), WORK( INDRV5+1 ), IWORK,
                    382:      $                   WORK( INDRV1+1 ), TOL, IINFO )
                    383: *
                    384: *           Reorthogonalize by modified Gram-Schmidt if eigenvalues are
                    385: *           close enough.
                    386: *
                    387:             IF( JBLK.EQ.1 )
                    388:      $         GO TO 90
                    389:             IF( ABS( XJ-XJM ).GT.ORTOL )
                    390:      $         GPIND = J
                    391:             IF( GPIND.NE.J ) THEN
                    392:                DO 80 I = GPIND, J - 1
                    393:                   ZTR = -DDOT( BLKSIZ, WORK( INDRV1+1 ), 1, Z( B1, I ),
                    394:      $                  1 )
                    395:                   CALL DAXPY( BLKSIZ, ZTR, Z( B1, I ), 1,
                    396:      $                        WORK( INDRV1+1 ), 1 )
                    397:    80          CONTINUE
                    398:             END IF
                    399: *
                    400: *           Check the infinity norm of the iterate.
                    401: *
                    402:    90       CONTINUE
                    403:             JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    404:             NRM = ABS( WORK( INDRV1+JMAX ) )
                    405: *
                    406: *           Continue for additional iterations after norm reaches
                    407: *           stopping criterion.
                    408: *
                    409:             IF( NRM.LT.DTPCRT )
                    410:      $         GO TO 70
                    411:             NRMCHK = NRMCHK + 1
                    412:             IF( NRMCHK.LT.EXTRA+1 )
                    413:      $         GO TO 70
                    414: *
                    415:             GO TO 110
                    416: *
                    417: *           If stopping criterion was not satisfied, update info and
                    418: *           store eigenvector number in array ifail.
                    419: *
                    420:   100       CONTINUE
                    421:             INFO = INFO + 1
                    422:             IFAIL( INFO ) = J
                    423: *
                    424: *           Accept iterate as jth eigenvector.
                    425: *
                    426:   110       CONTINUE
                    427:             SCL = ONE / DNRM2( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    428:             JMAX = IDAMAX( BLKSIZ, WORK( INDRV1+1 ), 1 )
                    429:             IF( WORK( INDRV1+JMAX ).LT.ZERO )
                    430:      $         SCL = -SCL
                    431:             CALL DSCAL( BLKSIZ, SCL, WORK( INDRV1+1 ), 1 )
                    432:   120       CONTINUE
                    433:             DO 130 I = 1, N
                    434:                Z( I, J ) = ZERO
                    435:   130       CONTINUE
                    436:             DO 140 I = 1, BLKSIZ
                    437:                Z( B1+I-1, J ) = WORK( INDRV1+I )
                    438:   140       CONTINUE
                    439: *
                    440: *           Save the shift to check eigenvalue spacing at next
                    441: *           iteration.
                    442: *
                    443:             XJM = XJ
                    444: *
                    445:   150    CONTINUE
                    446:   160 CONTINUE
                    447: *
                    448:       RETURN
                    449: *
                    450: *     End of DSTEIN
                    451: *
                    452:       END

CVSweb interface <joel.bertrand@systella.fr>