File:  [local] / rpl / lapack / lapack / dstedc.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:25 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
    2:      $                   LIWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          COMPZ
   11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            IWORK( * )
   15:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
   22: *  symmetric tridiagonal matrix using the divide and conquer method.
   23: *  The eigenvectors of a full or band real symmetric matrix can also be
   24: *  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
   25: *  matrix to tridiagonal form.
   26: *
   27: *  This code makes very mild assumptions about floating point
   28: *  arithmetic. It will work on machines with a guard digit in
   29: *  add/subtract, or on those binary machines without guard digits
   30: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   31: *  It could conceivably fail on hexadecimal or decimal machines
   32: *  without guard digits, but we know of none.  See DLAED3 for details.
   33: *
   34: *  Arguments
   35: *  =========
   36: *
   37: *  COMPZ   (input) CHARACTER*1
   38: *          = 'N':  Compute eigenvalues only.
   39: *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
   40: *          = 'V':  Compute eigenvectors of original dense symmetric
   41: *                  matrix also.  On entry, Z contains the orthogonal
   42: *                  matrix used to reduce the original matrix to
   43: *                  tridiagonal form.
   44: *
   45: *  N       (input) INTEGER
   46: *          The dimension of the symmetric tridiagonal matrix.  N >= 0.
   47: *
   48: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   49: *          On entry, the diagonal elements of the tridiagonal matrix.
   50: *          On exit, if INFO = 0, the eigenvalues in ascending order.
   51: *
   52: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
   53: *          On entry, the subdiagonal elements of the tridiagonal matrix.
   54: *          On exit, E has been destroyed.
   55: *
   56: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   57: *          On entry, if COMPZ = 'V', then Z contains the orthogonal
   58: *          matrix used in the reduction to tridiagonal form.
   59: *          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
   60: *          orthonormal eigenvectors of the original symmetric matrix,
   61: *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
   62: *          of the symmetric tridiagonal matrix.
   63: *          If  COMPZ = 'N', then Z is not referenced.
   64: *
   65: *  LDZ     (input) INTEGER
   66: *          The leading dimension of the array Z.  LDZ >= 1.
   67: *          If eigenvectors are desired, then LDZ >= max(1,N).
   68: *
   69: *  WORK    (workspace/output) DOUBLE PRECISION array,
   70: *                                         dimension (LWORK)
   71: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   72: *
   73: *  LWORK   (input) INTEGER
   74: *          The dimension of the array WORK.
   75: *          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
   76: *          If COMPZ = 'V' and N > 1 then LWORK must be at least
   77: *                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
   78: *                         where lg( N ) = smallest integer k such
   79: *                         that 2**k >= N.
   80: *          If COMPZ = 'I' and N > 1 then LWORK must be at least
   81: *                         ( 1 + 4*N + N**2 ).
   82: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
   83: *          equal to the minimum divide size, usually 25, then LWORK need
   84: *          only be max(1,2*(N-1)).
   85: *
   86: *          If LWORK = -1, then a workspace query is assumed; the routine
   87: *          only calculates the optimal size of the WORK array, returns
   88: *          this value as the first entry of the WORK array, and no error
   89: *          message related to LWORK is issued by XERBLA.
   90: *
   91: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
   92: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   93: *
   94: *  LIWORK  (input) INTEGER
   95: *          The dimension of the array IWORK.
   96: *          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
   97: *          If COMPZ = 'V' and N > 1 then LIWORK must be at least
   98: *                         ( 6 + 6*N + 5*N*lg N ).
   99: *          If COMPZ = 'I' and N > 1 then LIWORK must be at least
  100: *                         ( 3 + 5*N ).
  101: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
  102: *          equal to the minimum divide size, usually 25, then LIWORK
  103: *          need only be 1.
  104: *
  105: *          If LIWORK = -1, then a workspace query is assumed; the
  106: *          routine only calculates the optimal size of the IWORK array,
  107: *          returns this value as the first entry of the IWORK array, and
  108: *          no error message related to LIWORK is issued by XERBLA.
  109: *
  110: *  INFO    (output) INTEGER
  111: *          = 0:  successful exit.
  112: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  113: *          > 0:  The algorithm failed to compute an eigenvalue while
  114: *                working on the submatrix lying in rows and columns
  115: *                INFO/(N+1) through mod(INFO,N+1).
  116: *
  117: *  Further Details
  118: *  ===============
  119: *
  120: *  Based on contributions by
  121: *     Jeff Rutter, Computer Science Division, University of California
  122: *     at Berkeley, USA
  123: *  Modified by Francoise Tisseur, University of Tennessee.
  124: *
  125: *  =====================================================================
  126: *
  127: *     .. Parameters ..
  128:       DOUBLE PRECISION   ZERO, ONE, TWO
  129:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  130: *     ..
  131: *     .. Local Scalars ..
  132:       LOGICAL            LQUERY
  133:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
  134:      $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
  135:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
  136: *     ..
  137: *     .. External Functions ..
  138:       LOGICAL            LSAME
  139:       INTEGER            ILAENV
  140:       DOUBLE PRECISION   DLAMCH, DLANST
  141:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
  142: *     ..
  143: *     .. External Subroutines ..
  144:       EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
  145:      $                   DSTEQR, DSTERF, DSWAP, XERBLA
  146: *     ..
  147: *     .. Intrinsic Functions ..
  148:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
  149: *     ..
  150: *     .. Executable Statements ..
  151: *
  152: *     Test the input parameters.
  153: *
  154:       INFO = 0
  155:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  156: *
  157:       IF( LSAME( COMPZ, 'N' ) ) THEN
  158:          ICOMPZ = 0
  159:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  160:          ICOMPZ = 1
  161:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  162:          ICOMPZ = 2
  163:       ELSE
  164:          ICOMPZ = -1
  165:       END IF
  166:       IF( ICOMPZ.LT.0 ) THEN
  167:          INFO = -1
  168:       ELSE IF( N.LT.0 ) THEN
  169:          INFO = -2
  170:       ELSE IF( ( LDZ.LT.1 ) .OR.
  171:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
  172:          INFO = -6
  173:       END IF
  174: *
  175:       IF( INFO.EQ.0 ) THEN
  176: *
  177: *        Compute the workspace requirements
  178: *
  179:          SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
  180:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
  181:             LIWMIN = 1
  182:             LWMIN = 1
  183:          ELSE IF( N.LE.SMLSIZ ) THEN
  184:             LIWMIN = 1
  185:             LWMIN = 2*( N - 1 )
  186:          ELSE
  187:             LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
  188:             IF( 2**LGN.LT.N )
  189:      $         LGN = LGN + 1
  190:             IF( 2**LGN.LT.N )
  191:      $         LGN = LGN + 1
  192:             IF( ICOMPZ.EQ.1 ) THEN
  193:                LWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
  194:                LIWMIN = 6 + 6*N + 5*N*LGN
  195:             ELSE IF( ICOMPZ.EQ.2 ) THEN
  196:                LWMIN = 1 + 4*N + N**2
  197:                LIWMIN = 3 + 5*N
  198:             END IF
  199:          END IF
  200:          WORK( 1 ) = LWMIN
  201:          IWORK( 1 ) = LIWMIN
  202: *
  203:          IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
  204:             INFO = -8
  205:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
  206:             INFO = -10
  207:          END IF
  208:       END IF
  209: *
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'DSTEDC', -INFO )
  212:          RETURN
  213:       ELSE IF (LQUERY) THEN
  214:          RETURN
  215:       END IF
  216: *
  217: *     Quick return if possible
  218: *
  219:       IF( N.EQ.0 )
  220:      $   RETURN
  221:       IF( N.EQ.1 ) THEN
  222:          IF( ICOMPZ.NE.0 )
  223:      $      Z( 1, 1 ) = ONE
  224:          RETURN
  225:       END IF
  226: *
  227: *     If the following conditional clause is removed, then the routine
  228: *     will use the Divide and Conquer routine to compute only the
  229: *     eigenvalues, which requires (3N + 3N**2) real workspace and
  230: *     (2 + 5N + 2N lg(N)) integer workspace.
  231: *     Since on many architectures DSTERF is much faster than any other
  232: *     algorithm for finding eigenvalues only, it is used here
  233: *     as the default. If the conditional clause is removed, then
  234: *     information on the size of workspace needs to be changed.
  235: *
  236: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
  237: *
  238:       IF( ICOMPZ.EQ.0 ) THEN
  239:          CALL DSTERF( N, D, E, INFO )
  240:          GO TO 50
  241:       END IF
  242: *
  243: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
  244: *     solve the problem with another solver.
  245: *
  246:       IF( N.LE.SMLSIZ ) THEN
  247: *
  248:          CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  249: *
  250:       ELSE
  251: *
  252: *        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
  253: *        use.
  254: *
  255:          IF( ICOMPZ.EQ.1 ) THEN
  256:             STOREZ = 1 + N*N
  257:          ELSE
  258:             STOREZ = 1
  259:          END IF
  260: *
  261:          IF( ICOMPZ.EQ.2 ) THEN
  262:             CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  263:          END IF
  264: *
  265: *        Scale.
  266: *
  267:          ORGNRM = DLANST( 'M', N, D, E )
  268:          IF( ORGNRM.EQ.ZERO )
  269:      $      GO TO 50
  270: *
  271:          EPS = DLAMCH( 'Epsilon' )
  272: *
  273:          START = 1
  274: *
  275: *        while ( START <= N )
  276: *
  277:    10    CONTINUE
  278:          IF( START.LE.N ) THEN
  279: *
  280: *           Let FINISH be the position of the next subdiagonal entry
  281: *           such that E( FINISH ) <= TINY or FINISH = N if no such
  282: *           subdiagonal exists.  The matrix identified by the elements
  283: *           between START and FINISH constitutes an independent
  284: *           sub-problem.
  285: *
  286:             FINISH = START
  287:    20       CONTINUE
  288:             IF( FINISH.LT.N ) THEN
  289:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
  290:      $                    SQRT( ABS( D( FINISH+1 ) ) )
  291:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
  292:                   FINISH = FINISH + 1
  293:                   GO TO 20
  294:                END IF
  295:             END IF
  296: *
  297: *           (Sub) Problem determined.  Compute its size and solve it.
  298: *
  299:             M = FINISH - START + 1
  300:             IF( M.EQ.1 ) THEN
  301:                START = FINISH + 1
  302:                GO TO 10
  303:             END IF
  304:             IF( M.GT.SMLSIZ ) THEN
  305: *
  306: *              Scale.
  307: *
  308:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
  309:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
  310:      $                      INFO )
  311:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
  312:      $                      M-1, INFO )
  313: *
  314:                IF( ICOMPZ.EQ.1 ) THEN
  315:                   STRTRW = 1
  316:                ELSE
  317:                   STRTRW = START
  318:                END IF
  319:                CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
  320:      $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
  321:      $                      WORK( STOREZ ), IWORK, INFO )
  322:                IF( INFO.NE.0 ) THEN
  323:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
  324:      $                   MOD( INFO, ( M+1 ) ) + START - 1
  325:                   GO TO 50
  326:                END IF
  327: *
  328: *              Scale back.
  329: *
  330:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
  331:      $                      INFO )
  332: *
  333:             ELSE
  334:                IF( ICOMPZ.EQ.1 ) THEN
  335: *
  336: *                 Since QR won't update a Z matrix which is larger than
  337: *                 the length of D, we must solve the sub-problem in a
  338: *                 workspace and then multiply back into Z.
  339: *
  340:                   CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
  341:      $                         WORK( M*M+1 ), INFO )
  342:                   CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
  343:      $                         WORK( STOREZ ), N )
  344:                   CALL DGEMM( 'N', 'N', N, M, M, ONE,
  345:      $                        WORK( STOREZ ), N, WORK, M, ZERO,
  346:      $                        Z( 1, START ), LDZ )
  347:                ELSE IF( ICOMPZ.EQ.2 ) THEN
  348:                   CALL DSTEQR( 'I', M, D( START ), E( START ),
  349:      $                         Z( START, START ), LDZ, WORK, INFO )
  350:                ELSE
  351:                   CALL DSTERF( M, D( START ), E( START ), INFO )
  352:                END IF
  353:                IF( INFO.NE.0 ) THEN
  354:                   INFO = START*( N+1 ) + FINISH
  355:                   GO TO 50
  356:                END IF
  357:             END IF
  358: *
  359:             START = FINISH + 1
  360:             GO TO 10
  361:          END IF
  362: *
  363: *        endwhile
  364: *
  365: *        If the problem split any number of times, then the eigenvalues
  366: *        will not be properly ordered.  Here we permute the eigenvalues
  367: *        (and the associated eigenvectors) into ascending order.
  368: *
  369:          IF( M.NE.N ) THEN
  370:             IF( ICOMPZ.EQ.0 ) THEN
  371: *
  372: *              Use Quick Sort
  373: *
  374:                CALL DLASRT( 'I', N, D, INFO )
  375: *
  376:             ELSE
  377: *
  378: *              Use Selection Sort to minimize swaps of eigenvectors
  379: *
  380:                DO 40 II = 2, N
  381:                   I = II - 1
  382:                   K = I
  383:                   P = D( I )
  384:                   DO 30 J = II, N
  385:                      IF( D( J ).LT.P ) THEN
  386:                         K = J
  387:                         P = D( J )
  388:                      END IF
  389:    30             CONTINUE
  390:                   IF( K.NE.I ) THEN
  391:                      D( K ) = D( I )
  392:                      D( I ) = P
  393:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  394:                   END IF
  395:    40          CONTINUE
  396:             END IF
  397:          END IF
  398:       END IF
  399: *
  400:    50 CONTINUE
  401:       WORK( 1 ) = LWMIN
  402:       IWORK( 1 ) = LIWMIN
  403: *
  404:       RETURN
  405: *
  406: *     End of DSTEDC
  407: *
  408:       END

CVSweb interface <joel.bertrand@systella.fr>