File:  [local] / rpl / lapack / lapack / dstedc.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:07 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSTEDC
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSTEDC + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
   22: *                          LIWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          COMPZ
   26: *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
   40: *> symmetric tridiagonal matrix using the divide and conquer method.
   41: *> The eigenvectors of a full or band real symmetric matrix can also be
   42: *> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
   43: *> matrix to tridiagonal form.
   44: *>
   45: *> This code makes very mild assumptions about floating point
   46: *> arithmetic. It will work on machines with a guard digit in
   47: *> add/subtract, or on those binary machines without guard digits
   48: *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
   49: *> It could conceivably fail on hexadecimal or decimal machines
   50: *> without guard digits, but we know of none.  See DLAED3 for details.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] COMPZ
   57: *> \verbatim
   58: *>          COMPZ is CHARACTER*1
   59: *>          = 'N':  Compute eigenvalues only.
   60: *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
   61: *>          = 'V':  Compute eigenvectors of original dense symmetric
   62: *>                  matrix also.  On entry, Z contains the orthogonal
   63: *>                  matrix used to reduce the original matrix to
   64: *>                  tridiagonal form.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The dimension of the symmetric tridiagonal matrix.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] D
   74: *> \verbatim
   75: *>          D is DOUBLE PRECISION array, dimension (N)
   76: *>          On entry, the diagonal elements of the tridiagonal matrix.
   77: *>          On exit, if INFO = 0, the eigenvalues in ascending order.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] E
   81: *> \verbatim
   82: *>          E is DOUBLE PRECISION array, dimension (N-1)
   83: *>          On entry, the subdiagonal elements of the tridiagonal matrix.
   84: *>          On exit, E has been destroyed.
   85: *> \endverbatim
   86: *>
   87: *> \param[in,out] Z
   88: *> \verbatim
   89: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
   90: *>          On entry, if COMPZ = 'V', then Z contains the orthogonal
   91: *>          matrix used in the reduction to tridiagonal form.
   92: *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
   93: *>          orthonormal eigenvectors of the original symmetric matrix,
   94: *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
   95: *>          of the symmetric tridiagonal matrix.
   96: *>          If  COMPZ = 'N', then Z is not referenced.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDZ
  100: *> \verbatim
  101: *>          LDZ is INTEGER
  102: *>          The leading dimension of the array Z.  LDZ >= 1.
  103: *>          If eigenvectors are desired, then LDZ >= max(1,N).
  104: *> \endverbatim
  105: *>
  106: *> \param[out] WORK
  107: *> \verbatim
  108: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  109: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LWORK
  113: *> \verbatim
  114: *>          LWORK is INTEGER
  115: *>          The dimension of the array WORK.
  116: *>          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
  117: *>          If COMPZ = 'V' and N > 1 then LWORK must be at least
  118: *>                         ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
  119: *>                         where lg( N ) = smallest integer k such
  120: *>                         that 2**k >= N.
  121: *>          If COMPZ = 'I' and N > 1 then LWORK must be at least
  122: *>                         ( 1 + 4*N + N**2 ).
  123: *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
  124: *>          equal to the minimum divide size, usually 25, then LWORK need
  125: *>          only be max(1,2*(N-1)).
  126: *>
  127: *>          If LWORK = -1, then a workspace query is assumed; the routine
  128: *>          only calculates the optimal size of the WORK array, returns
  129: *>          this value as the first entry of the WORK array, and no error
  130: *>          message related to LWORK is issued by XERBLA.
  131: *> \endverbatim
  132: *>
  133: *> \param[out] IWORK
  134: *> \verbatim
  135: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  136: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LIWORK
  140: *> \verbatim
  141: *>          LIWORK is INTEGER
  142: *>          The dimension of the array IWORK.
  143: *>          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
  144: *>          If COMPZ = 'V' and N > 1 then LIWORK must be at least
  145: *>                         ( 6 + 6*N + 5*N*lg N ).
  146: *>          If COMPZ = 'I' and N > 1 then LIWORK must be at least
  147: *>                         ( 3 + 5*N ).
  148: *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
  149: *>          equal to the minimum divide size, usually 25, then LIWORK
  150: *>          need only be 1.
  151: *>
  152: *>          If LIWORK = -1, then a workspace query is assumed; the
  153: *>          routine only calculates the optimal size of the IWORK array,
  154: *>          returns this value as the first entry of the IWORK array, and
  155: *>          no error message related to LIWORK is issued by XERBLA.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] INFO
  159: *> \verbatim
  160: *>          INFO is INTEGER
  161: *>          = 0:  successful exit.
  162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  163: *>          > 0:  The algorithm failed to compute an eigenvalue while
  164: *>                working on the submatrix lying in rows and columns
  165: *>                INFO/(N+1) through mod(INFO,N+1).
  166: *> \endverbatim
  167: *
  168: *  Authors:
  169: *  ========
  170: *
  171: *> \author Univ. of Tennessee
  172: *> \author Univ. of California Berkeley
  173: *> \author Univ. of Colorado Denver
  174: *> \author NAG Ltd.
  175: *
  176: *> \ingroup auxOTHERcomputational
  177: *
  178: *> \par Contributors:
  179: *  ==================
  180: *>
  181: *> Jeff Rutter, Computer Science Division, University of California
  182: *> at Berkeley, USA \n
  183: *>  Modified by Francoise Tisseur, University of Tennessee
  184: *>
  185: *  =====================================================================
  186:       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
  187:      $                   LIWORK, INFO )
  188: *
  189: *  -- LAPACK computational routine --
  190: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  191: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192: *
  193: *     .. Scalar Arguments ..
  194:       CHARACTER          COMPZ
  195:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
  196: *     ..
  197: *     .. Array Arguments ..
  198:       INTEGER            IWORK( * )
  199:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       DOUBLE PRECISION   ZERO, ONE, TWO
  206:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  207: *     ..
  208: *     .. Local Scalars ..
  209:       LOGICAL            LQUERY
  210:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
  211:      $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
  212:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
  213: *     ..
  214: *     .. External Functions ..
  215:       LOGICAL            LSAME
  216:       INTEGER            ILAENV
  217:       DOUBLE PRECISION   DLAMCH, DLANST
  218:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
  222:      $                   DSTEQR, DSTERF, DSWAP, XERBLA
  223: *     ..
  224: *     .. Intrinsic Functions ..
  225:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229: *     Test the input parameters.
  230: *
  231:       INFO = 0
  232:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  233: *
  234:       IF( LSAME( COMPZ, 'N' ) ) THEN
  235:          ICOMPZ = 0
  236:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  237:          ICOMPZ = 1
  238:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  239:          ICOMPZ = 2
  240:       ELSE
  241:          ICOMPZ = -1
  242:       END IF
  243:       IF( ICOMPZ.LT.0 ) THEN
  244:          INFO = -1
  245:       ELSE IF( N.LT.0 ) THEN
  246:          INFO = -2
  247:       ELSE IF( ( LDZ.LT.1 ) .OR.
  248:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
  249:          INFO = -6
  250:       END IF
  251: *
  252:       IF( INFO.EQ.0 ) THEN
  253: *
  254: *        Compute the workspace requirements
  255: *
  256:          SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
  257:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
  258:             LIWMIN = 1
  259:             LWMIN = 1
  260:          ELSE IF( N.LE.SMLSIZ ) THEN
  261:             LIWMIN = 1
  262:             LWMIN = 2*( N - 1 )
  263:          ELSE
  264:             LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
  265:             IF( 2**LGN.LT.N )
  266:      $         LGN = LGN + 1
  267:             IF( 2**LGN.LT.N )
  268:      $         LGN = LGN + 1
  269:             IF( ICOMPZ.EQ.1 ) THEN
  270:                LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
  271:                LIWMIN = 6 + 6*N + 5*N*LGN
  272:             ELSE IF( ICOMPZ.EQ.2 ) THEN
  273:                LWMIN = 1 + 4*N + N**2
  274:                LIWMIN = 3 + 5*N
  275:             END IF
  276:          END IF
  277:          WORK( 1 ) = LWMIN
  278:          IWORK( 1 ) = LIWMIN
  279: *
  280:          IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
  281:             INFO = -8
  282:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
  283:             INFO = -10
  284:          END IF
  285:       END IF
  286: *
  287:       IF( INFO.NE.0 ) THEN
  288:          CALL XERBLA( 'DSTEDC', -INFO )
  289:          RETURN
  290:       ELSE IF (LQUERY) THEN
  291:          RETURN
  292:       END IF
  293: *
  294: *     Quick return if possible
  295: *
  296:       IF( N.EQ.0 )
  297:      $   RETURN
  298:       IF( N.EQ.1 ) THEN
  299:          IF( ICOMPZ.NE.0 )
  300:      $      Z( 1, 1 ) = ONE
  301:          RETURN
  302:       END IF
  303: *
  304: *     If the following conditional clause is removed, then the routine
  305: *     will use the Divide and Conquer routine to compute only the
  306: *     eigenvalues, which requires (3N + 3N**2) real workspace and
  307: *     (2 + 5N + 2N lg(N)) integer workspace.
  308: *     Since on many architectures DSTERF is much faster than any other
  309: *     algorithm for finding eigenvalues only, it is used here
  310: *     as the default. If the conditional clause is removed, then
  311: *     information on the size of workspace needs to be changed.
  312: *
  313: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
  314: *
  315:       IF( ICOMPZ.EQ.0 ) THEN
  316:          CALL DSTERF( N, D, E, INFO )
  317:          GO TO 50
  318:       END IF
  319: *
  320: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
  321: *     solve the problem with another solver.
  322: *
  323:       IF( N.LE.SMLSIZ ) THEN
  324: *
  325:          CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
  326: *
  327:       ELSE
  328: *
  329: *        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
  330: *        use.
  331: *
  332:          IF( ICOMPZ.EQ.1 ) THEN
  333:             STOREZ = 1 + N*N
  334:          ELSE
  335:             STOREZ = 1
  336:          END IF
  337: *
  338:          IF( ICOMPZ.EQ.2 ) THEN
  339:             CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  340:          END IF
  341: *
  342: *        Scale.
  343: *
  344:          ORGNRM = DLANST( 'M', N, D, E )
  345:          IF( ORGNRM.EQ.ZERO )
  346:      $      GO TO 50
  347: *
  348:          EPS = DLAMCH( 'Epsilon' )
  349: *
  350:          START = 1
  351: *
  352: *        while ( START <= N )
  353: *
  354:    10    CONTINUE
  355:          IF( START.LE.N ) THEN
  356: *
  357: *           Let FINISH be the position of the next subdiagonal entry
  358: *           such that E( FINISH ) <= TINY or FINISH = N if no such
  359: *           subdiagonal exists.  The matrix identified by the elements
  360: *           between START and FINISH constitutes an independent
  361: *           sub-problem.
  362: *
  363:             FINISH = START
  364:    20       CONTINUE
  365:             IF( FINISH.LT.N ) THEN
  366:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
  367:      $                    SQRT( ABS( D( FINISH+1 ) ) )
  368:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
  369:                   FINISH = FINISH + 1
  370:                   GO TO 20
  371:                END IF
  372:             END IF
  373: *
  374: *           (Sub) Problem determined.  Compute its size and solve it.
  375: *
  376:             M = FINISH - START + 1
  377:             IF( M.EQ.1 ) THEN
  378:                START = FINISH + 1
  379:                GO TO 10
  380:             END IF
  381:             IF( M.GT.SMLSIZ ) THEN
  382: *
  383: *              Scale.
  384: *
  385:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
  386:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
  387:      $                      INFO )
  388:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
  389:      $                      M-1, INFO )
  390: *
  391:                IF( ICOMPZ.EQ.1 ) THEN
  392:                   STRTRW = 1
  393:                ELSE
  394:                   STRTRW = START
  395:                END IF
  396:                CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
  397:      $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
  398:      $                      WORK( STOREZ ), IWORK, INFO )
  399:                IF( INFO.NE.0 ) THEN
  400:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
  401:      $                   MOD( INFO, ( M+1 ) ) + START - 1
  402:                   GO TO 50
  403:                END IF
  404: *
  405: *              Scale back.
  406: *
  407:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
  408:      $                      INFO )
  409: *
  410:             ELSE
  411:                IF( ICOMPZ.EQ.1 ) THEN
  412: *
  413: *                 Since QR won't update a Z matrix which is larger than
  414: *                 the length of D, we must solve the sub-problem in a
  415: *                 workspace and then multiply back into Z.
  416: *
  417:                   CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
  418:      $                         WORK( M*M+1 ), INFO )
  419:                   CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
  420:      $                         WORK( STOREZ ), N )
  421:                   CALL DGEMM( 'N', 'N', N, M, M, ONE,
  422:      $                        WORK( STOREZ ), N, WORK, M, ZERO,
  423:      $                        Z( 1, START ), LDZ )
  424:                ELSE IF( ICOMPZ.EQ.2 ) THEN
  425:                   CALL DSTEQR( 'I', M, D( START ), E( START ),
  426:      $                         Z( START, START ), LDZ, WORK, INFO )
  427:                ELSE
  428:                   CALL DSTERF( M, D( START ), E( START ), INFO )
  429:                END IF
  430:                IF( INFO.NE.0 ) THEN
  431:                   INFO = START*( N+1 ) + FINISH
  432:                   GO TO 50
  433:                END IF
  434:             END IF
  435: *
  436:             START = FINISH + 1
  437:             GO TO 10
  438:          END IF
  439: *
  440: *        endwhile
  441: *
  442:          IF( ICOMPZ.EQ.0 ) THEN
  443: *
  444: *          Use Quick Sort
  445: *
  446:            CALL DLASRT( 'I', N, D, INFO )
  447: *
  448:          ELSE
  449: *
  450: *          Use Selection Sort to minimize swaps of eigenvectors
  451: *
  452:            DO 40 II = 2, N
  453:               I = II - 1
  454:               K = I
  455:               P = D( I )
  456:               DO 30 J = II, N
  457:                  IF( D( J ).LT.P ) THEN
  458:                     K = J
  459:                     P = D( J )
  460:                  END IF
  461:    30         CONTINUE
  462:               IF( K.NE.I ) THEN
  463:                  D( K ) = D( I )
  464:                  D( I ) = P
  465:                  CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
  466:               END IF
  467:    40      CONTINUE
  468:          END IF
  469:       END IF
  470: *
  471:    50 CONTINUE
  472:       WORK( 1 ) = LWMIN
  473:       IWORK( 1 ) = LIWMIN
  474: *
  475:       RETURN
  476: *
  477: *     End of DSTEDC
  478: *
  479:       END

CVSweb interface <joel.bertrand@systella.fr>