Annotation of rpl/lapack/lapack/dstedc.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
                      2:      $                   LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          COMPZ
                     11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
                     22: *  symmetric tridiagonal matrix using the divide and conquer method.
                     23: *  The eigenvectors of a full or band real symmetric matrix can also be
                     24: *  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
                     25: *  matrix to tridiagonal form.
                     26: *
                     27: *  This code makes very mild assumptions about floating point
                     28: *  arithmetic. It will work on machines with a guard digit in
                     29: *  add/subtract, or on those binary machines without guard digits
                     30: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
                     31: *  It could conceivably fail on hexadecimal or decimal machines
                     32: *  without guard digits, but we know of none.  See DLAED3 for details.
                     33: *
                     34: *  Arguments
                     35: *  =========
                     36: *
                     37: *  COMPZ   (input) CHARACTER*1
                     38: *          = 'N':  Compute eigenvalues only.
                     39: *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
                     40: *          = 'V':  Compute eigenvectors of original dense symmetric
                     41: *                  matrix also.  On entry, Z contains the orthogonal
                     42: *                  matrix used to reduce the original matrix to
                     43: *                  tridiagonal form.
                     44: *
                     45: *  N       (input) INTEGER
                     46: *          The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     47: *
                     48: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     49: *          On entry, the diagonal elements of the tridiagonal matrix.
                     50: *          On exit, if INFO = 0, the eigenvalues in ascending order.
                     51: *
                     52: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
                     53: *          On entry, the subdiagonal elements of the tridiagonal matrix.
                     54: *          On exit, E has been destroyed.
                     55: *
                     56: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
                     57: *          On entry, if COMPZ = 'V', then Z contains the orthogonal
                     58: *          matrix used in the reduction to tridiagonal form.
                     59: *          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
                     60: *          orthonormal eigenvectors of the original symmetric matrix,
                     61: *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
                     62: *          of the symmetric tridiagonal matrix.
                     63: *          If  COMPZ = 'N', then Z is not referenced.
                     64: *
                     65: *  LDZ     (input) INTEGER
                     66: *          The leading dimension of the array Z.  LDZ >= 1.
                     67: *          If eigenvectors are desired, then LDZ >= max(1,N).
                     68: *
                     69: *  WORK    (workspace/output) DOUBLE PRECISION array,
                     70: *                                         dimension (LWORK)
                     71: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     72: *
                     73: *  LWORK   (input) INTEGER
                     74: *          The dimension of the array WORK.
                     75: *          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
                     76: *          If COMPZ = 'V' and N > 1 then LWORK must be at least
                     77: *                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
                     78: *                         where lg( N ) = smallest integer k such
                     79: *                         that 2**k >= N.
                     80: *          If COMPZ = 'I' and N > 1 then LWORK must be at least
                     81: *                         ( 1 + 4*N + N**2 ).
                     82: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
                     83: *          equal to the minimum divide size, usually 25, then LWORK need
                     84: *          only be max(1,2*(N-1)).
                     85: *
                     86: *          If LWORK = -1, then a workspace query is assumed; the routine
                     87: *          only calculates the optimal size of the WORK array, returns
                     88: *          this value as the first entry of the WORK array, and no error
                     89: *          message related to LWORK is issued by XERBLA.
                     90: *
                     91: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     92: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                     93: *
                     94: *  LIWORK  (input) INTEGER
                     95: *          The dimension of the array IWORK.
                     96: *          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
                     97: *          If COMPZ = 'V' and N > 1 then LIWORK must be at least
                     98: *                         ( 6 + 6*N + 5*N*lg N ).
                     99: *          If COMPZ = 'I' and N > 1 then LIWORK must be at least
                    100: *                         ( 3 + 5*N ).
                    101: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
                    102: *          equal to the minimum divide size, usually 25, then LIWORK
                    103: *          need only be 1.
                    104: *
                    105: *          If LIWORK = -1, then a workspace query is assumed; the
                    106: *          routine only calculates the optimal size of the IWORK array,
                    107: *          returns this value as the first entry of the IWORK array, and
                    108: *          no error message related to LIWORK is issued by XERBLA.
                    109: *
                    110: *  INFO    (output) INTEGER
                    111: *          = 0:  successful exit.
                    112: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    113: *          > 0:  The algorithm failed to compute an eigenvalue while
                    114: *                working on the submatrix lying in rows and columns
                    115: *                INFO/(N+1) through mod(INFO,N+1).
                    116: *
                    117: *  Further Details
                    118: *  ===============
                    119: *
                    120: *  Based on contributions by
                    121: *     Jeff Rutter, Computer Science Division, University of California
                    122: *     at Berkeley, USA
                    123: *  Modified by Francoise Tisseur, University of Tennessee.
                    124: *
                    125: *  =====================================================================
                    126: *
                    127: *     .. Parameters ..
                    128:       DOUBLE PRECISION   ZERO, ONE, TWO
                    129:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
                    130: *     ..
                    131: *     .. Local Scalars ..
                    132:       LOGICAL            LQUERY
                    133:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
                    134:      $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
                    135:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
                    136: *     ..
                    137: *     .. External Functions ..
                    138:       LOGICAL            LSAME
                    139:       INTEGER            ILAENV
                    140:       DOUBLE PRECISION   DLAMCH, DLANST
                    141:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
                    142: *     ..
                    143: *     .. External Subroutines ..
                    144:       EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
                    145:      $                   DSTEQR, DSTERF, DSWAP, XERBLA
                    146: *     ..
                    147: *     .. Intrinsic Functions ..
                    148:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
                    149: *     ..
                    150: *     .. Executable Statements ..
                    151: *
                    152: *     Test the input parameters.
                    153: *
                    154:       INFO = 0
                    155:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    156: *
                    157:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    158:          ICOMPZ = 0
                    159:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    160:          ICOMPZ = 1
                    161:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    162:          ICOMPZ = 2
                    163:       ELSE
                    164:          ICOMPZ = -1
                    165:       END IF
                    166:       IF( ICOMPZ.LT.0 ) THEN
                    167:          INFO = -1
                    168:       ELSE IF( N.LT.0 ) THEN
                    169:          INFO = -2
                    170:       ELSE IF( ( LDZ.LT.1 ) .OR.
                    171:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
                    172:          INFO = -6
                    173:       END IF
                    174: *
                    175:       IF( INFO.EQ.0 ) THEN
                    176: *
                    177: *        Compute the workspace requirements
                    178: *
                    179:          SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
                    180:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
                    181:             LIWMIN = 1
                    182:             LWMIN = 1
                    183:          ELSE IF( N.LE.SMLSIZ ) THEN
                    184:             LIWMIN = 1
                    185:             LWMIN = 2*( N - 1 )
                    186:          ELSE
                    187:             LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
                    188:             IF( 2**LGN.LT.N )
                    189:      $         LGN = LGN + 1
                    190:             IF( 2**LGN.LT.N )
                    191:      $         LGN = LGN + 1
                    192:             IF( ICOMPZ.EQ.1 ) THEN
                    193:                LWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
                    194:                LIWMIN = 6 + 6*N + 5*N*LGN
                    195:             ELSE IF( ICOMPZ.EQ.2 ) THEN
                    196:                LWMIN = 1 + 4*N + N**2
                    197:                LIWMIN = 3 + 5*N
                    198:             END IF
                    199:          END IF
                    200:          WORK( 1 ) = LWMIN
                    201:          IWORK( 1 ) = LIWMIN
                    202: *
                    203:          IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
                    204:             INFO = -8
                    205:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
                    206:             INFO = -10
                    207:          END IF
                    208:       END IF
                    209: *
                    210:       IF( INFO.NE.0 ) THEN
                    211:          CALL XERBLA( 'DSTEDC', -INFO )
                    212:          RETURN
                    213:       ELSE IF (LQUERY) THEN
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     Quick return if possible
                    218: *
                    219:       IF( N.EQ.0 )
                    220:      $   RETURN
                    221:       IF( N.EQ.1 ) THEN
                    222:          IF( ICOMPZ.NE.0 )
                    223:      $      Z( 1, 1 ) = ONE
                    224:          RETURN
                    225:       END IF
                    226: *
                    227: *     If the following conditional clause is removed, then the routine
                    228: *     will use the Divide and Conquer routine to compute only the
                    229: *     eigenvalues, which requires (3N + 3N**2) real workspace and
                    230: *     (2 + 5N + 2N lg(N)) integer workspace.
                    231: *     Since on many architectures DSTERF is much faster than any other
                    232: *     algorithm for finding eigenvalues only, it is used here
                    233: *     as the default. If the conditional clause is removed, then
                    234: *     information on the size of workspace needs to be changed.
                    235: *
                    236: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
                    237: *
                    238:       IF( ICOMPZ.EQ.0 ) THEN
                    239:          CALL DSTERF( N, D, E, INFO )
                    240:          GO TO 50
                    241:       END IF
                    242: *
                    243: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
                    244: *     solve the problem with another solver.
                    245: *
                    246:       IF( N.LE.SMLSIZ ) THEN
                    247: *
                    248:          CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
                    249: *
                    250:       ELSE
                    251: *
                    252: *        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
                    253: *        use.
                    254: *
                    255:          IF( ICOMPZ.EQ.1 ) THEN
                    256:             STOREZ = 1 + N*N
                    257:          ELSE
                    258:             STOREZ = 1
                    259:          END IF
                    260: *
                    261:          IF( ICOMPZ.EQ.2 ) THEN
                    262:             CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
                    263:          END IF
                    264: *
                    265: *        Scale.
                    266: *
                    267:          ORGNRM = DLANST( 'M', N, D, E )
                    268:          IF( ORGNRM.EQ.ZERO )
                    269:      $      GO TO 50
                    270: *
                    271:          EPS = DLAMCH( 'Epsilon' )
                    272: *
                    273:          START = 1
                    274: *
                    275: *        while ( START <= N )
                    276: *
                    277:    10    CONTINUE
                    278:          IF( START.LE.N ) THEN
                    279: *
                    280: *           Let FINISH be the position of the next subdiagonal entry
                    281: *           such that E( FINISH ) <= TINY or FINISH = N if no such
                    282: *           subdiagonal exists.  The matrix identified by the elements
                    283: *           between START and FINISH constitutes an independent
                    284: *           sub-problem.
                    285: *
                    286:             FINISH = START
                    287:    20       CONTINUE
                    288:             IF( FINISH.LT.N ) THEN
                    289:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
                    290:      $                    SQRT( ABS( D( FINISH+1 ) ) )
                    291:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
                    292:                   FINISH = FINISH + 1
                    293:                   GO TO 20
                    294:                END IF
                    295:             END IF
                    296: *
                    297: *           (Sub) Problem determined.  Compute its size and solve it.
                    298: *
                    299:             M = FINISH - START + 1
                    300:             IF( M.EQ.1 ) THEN
                    301:                START = FINISH + 1
                    302:                GO TO 10
                    303:             END IF
                    304:             IF( M.GT.SMLSIZ ) THEN
                    305: *
                    306: *              Scale.
                    307: *
                    308:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
                    309:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
                    310:      $                      INFO )
                    311:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
                    312:      $                      M-1, INFO )
                    313: *
                    314:                IF( ICOMPZ.EQ.1 ) THEN
                    315:                   STRTRW = 1
                    316:                ELSE
                    317:                   STRTRW = START
                    318:                END IF
                    319:                CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
                    320:      $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
                    321:      $                      WORK( STOREZ ), IWORK, INFO )
                    322:                IF( INFO.NE.0 ) THEN
                    323:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
                    324:      $                   MOD( INFO, ( M+1 ) ) + START - 1
                    325:                   GO TO 50
                    326:                END IF
                    327: *
                    328: *              Scale back.
                    329: *
                    330:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
                    331:      $                      INFO )
                    332: *
                    333:             ELSE
                    334:                IF( ICOMPZ.EQ.1 ) THEN
                    335: *
                    336: *                 Since QR won't update a Z matrix which is larger than
                    337: *                 the length of D, we must solve the sub-problem in a
                    338: *                 workspace and then multiply back into Z.
                    339: *
                    340:                   CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
                    341:      $                         WORK( M*M+1 ), INFO )
                    342:                   CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
                    343:      $                         WORK( STOREZ ), N )
                    344:                   CALL DGEMM( 'N', 'N', N, M, M, ONE,
                    345:      $                        WORK( STOREZ ), N, WORK, M, ZERO,
                    346:      $                        Z( 1, START ), LDZ )
                    347:                ELSE IF( ICOMPZ.EQ.2 ) THEN
                    348:                   CALL DSTEQR( 'I', M, D( START ), E( START ),
                    349:      $                         Z( START, START ), LDZ, WORK, INFO )
                    350:                ELSE
                    351:                   CALL DSTERF( M, D( START ), E( START ), INFO )
                    352:                END IF
                    353:                IF( INFO.NE.0 ) THEN
                    354:                   INFO = START*( N+1 ) + FINISH
                    355:                   GO TO 50
                    356:                END IF
                    357:             END IF
                    358: *
                    359:             START = FINISH + 1
                    360:             GO TO 10
                    361:          END IF
                    362: *
                    363: *        endwhile
                    364: *
                    365: *        If the problem split any number of times, then the eigenvalues
                    366: *        will not be properly ordered.  Here we permute the eigenvalues
                    367: *        (and the associated eigenvectors) into ascending order.
                    368: *
                    369:          IF( M.NE.N ) THEN
                    370:             IF( ICOMPZ.EQ.0 ) THEN
                    371: *
                    372: *              Use Quick Sort
                    373: *
                    374:                CALL DLASRT( 'I', N, D, INFO )
                    375: *
                    376:             ELSE
                    377: *
                    378: *              Use Selection Sort to minimize swaps of eigenvectors
                    379: *
                    380:                DO 40 II = 2, N
                    381:                   I = II - 1
                    382:                   K = I
                    383:                   P = D( I )
                    384:                   DO 30 J = II, N
                    385:                      IF( D( J ).LT.P ) THEN
                    386:                         K = J
                    387:                         P = D( J )
                    388:                      END IF
                    389:    30             CONTINUE
                    390:                   IF( K.NE.I ) THEN
                    391:                      D( K ) = D( I )
                    392:                      D( I ) = P
                    393:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
                    394:                   END IF
                    395:    40          CONTINUE
                    396:             END IF
                    397:          END IF
                    398:       END IF
                    399: *
                    400:    50 CONTINUE
                    401:       WORK( 1 ) = LWMIN
                    402:       IWORK( 1 ) = LIWMIN
                    403: *
                    404:       RETURN
                    405: *
                    406: *     End of DSTEDC
                    407: *
                    408:       END

CVSweb interface <joel.bertrand@systella.fr>