Annotation of rpl/lapack/lapack/dstedc.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
        !             2:      $                   LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          COMPZ
        !            11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
        !            22: *  symmetric tridiagonal matrix using the divide and conquer method.
        !            23: *  The eigenvectors of a full or band real symmetric matrix can also be
        !            24: *  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
        !            25: *  matrix to tridiagonal form.
        !            26: *
        !            27: *  This code makes very mild assumptions about floating point
        !            28: *  arithmetic. It will work on machines with a guard digit in
        !            29: *  add/subtract, or on those binary machines without guard digits
        !            30: *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        !            31: *  It could conceivably fail on hexadecimal or decimal machines
        !            32: *  without guard digits, but we know of none.  See DLAED3 for details.
        !            33: *
        !            34: *  Arguments
        !            35: *  =========
        !            36: *
        !            37: *  COMPZ   (input) CHARACTER*1
        !            38: *          = 'N':  Compute eigenvalues only.
        !            39: *          = 'I':  Compute eigenvectors of tridiagonal matrix also.
        !            40: *          = 'V':  Compute eigenvectors of original dense symmetric
        !            41: *                  matrix also.  On entry, Z contains the orthogonal
        !            42: *                  matrix used to reduce the original matrix to
        !            43: *                  tridiagonal form.
        !            44: *
        !            45: *  N       (input) INTEGER
        !            46: *          The dimension of the symmetric tridiagonal matrix.  N >= 0.
        !            47: *
        !            48: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            49: *          On entry, the diagonal elements of the tridiagonal matrix.
        !            50: *          On exit, if INFO = 0, the eigenvalues in ascending order.
        !            51: *
        !            52: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
        !            53: *          On entry, the subdiagonal elements of the tridiagonal matrix.
        !            54: *          On exit, E has been destroyed.
        !            55: *
        !            56: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
        !            57: *          On entry, if COMPZ = 'V', then Z contains the orthogonal
        !            58: *          matrix used in the reduction to tridiagonal form.
        !            59: *          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
        !            60: *          orthonormal eigenvectors of the original symmetric matrix,
        !            61: *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
        !            62: *          of the symmetric tridiagonal matrix.
        !            63: *          If  COMPZ = 'N', then Z is not referenced.
        !            64: *
        !            65: *  LDZ     (input) INTEGER
        !            66: *          The leading dimension of the array Z.  LDZ >= 1.
        !            67: *          If eigenvectors are desired, then LDZ >= max(1,N).
        !            68: *
        !            69: *  WORK    (workspace/output) DOUBLE PRECISION array,
        !            70: *                                         dimension (LWORK)
        !            71: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            72: *
        !            73: *  LWORK   (input) INTEGER
        !            74: *          The dimension of the array WORK.
        !            75: *          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
        !            76: *          If COMPZ = 'V' and N > 1 then LWORK must be at least
        !            77: *                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
        !            78: *                         where lg( N ) = smallest integer k such
        !            79: *                         that 2**k >= N.
        !            80: *          If COMPZ = 'I' and N > 1 then LWORK must be at least
        !            81: *                         ( 1 + 4*N + N**2 ).
        !            82: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !            83: *          equal to the minimum divide size, usually 25, then LWORK need
        !            84: *          only be max(1,2*(N-1)).
        !            85: *
        !            86: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            87: *          only calculates the optimal size of the WORK array, returns
        !            88: *          this value as the first entry of the WORK array, and no error
        !            89: *          message related to LWORK is issued by XERBLA.
        !            90: *
        !            91: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !            92: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !            93: *
        !            94: *  LIWORK  (input) INTEGER
        !            95: *          The dimension of the array IWORK.
        !            96: *          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
        !            97: *          If COMPZ = 'V' and N > 1 then LIWORK must be at least
        !            98: *                         ( 6 + 6*N + 5*N*lg N ).
        !            99: *          If COMPZ = 'I' and N > 1 then LIWORK must be at least
        !           100: *                         ( 3 + 5*N ).
        !           101: *          Note that for COMPZ = 'I' or 'V', then if N is less than or
        !           102: *          equal to the minimum divide size, usually 25, then LIWORK
        !           103: *          need only be 1.
        !           104: *
        !           105: *          If LIWORK = -1, then a workspace query is assumed; the
        !           106: *          routine only calculates the optimal size of the IWORK array,
        !           107: *          returns this value as the first entry of the IWORK array, and
        !           108: *          no error message related to LIWORK is issued by XERBLA.
        !           109: *
        !           110: *  INFO    (output) INTEGER
        !           111: *          = 0:  successful exit.
        !           112: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           113: *          > 0:  The algorithm failed to compute an eigenvalue while
        !           114: *                working on the submatrix lying in rows and columns
        !           115: *                INFO/(N+1) through mod(INFO,N+1).
        !           116: *
        !           117: *  Further Details
        !           118: *  ===============
        !           119: *
        !           120: *  Based on contributions by
        !           121: *     Jeff Rutter, Computer Science Division, University of California
        !           122: *     at Berkeley, USA
        !           123: *  Modified by Francoise Tisseur, University of Tennessee.
        !           124: *
        !           125: *  =====================================================================
        !           126: *
        !           127: *     .. Parameters ..
        !           128:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           129:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
        !           130: *     ..
        !           131: *     .. Local Scalars ..
        !           132:       LOGICAL            LQUERY
        !           133:       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
        !           134:      $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
        !           135:       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
        !           136: *     ..
        !           137: *     .. External Functions ..
        !           138:       LOGICAL            LSAME
        !           139:       INTEGER            ILAENV
        !           140:       DOUBLE PRECISION   DLAMCH, DLANST
        !           141:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
        !           142: *     ..
        !           143: *     .. External Subroutines ..
        !           144:       EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
        !           145:      $                   DSTEQR, DSTERF, DSWAP, XERBLA
        !           146: *     ..
        !           147: *     .. Intrinsic Functions ..
        !           148:       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
        !           149: *     ..
        !           150: *     .. Executable Statements ..
        !           151: *
        !           152: *     Test the input parameters.
        !           153: *
        !           154:       INFO = 0
        !           155:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           156: *
        !           157:       IF( LSAME( COMPZ, 'N' ) ) THEN
        !           158:          ICOMPZ = 0
        !           159:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
        !           160:          ICOMPZ = 1
        !           161:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
        !           162:          ICOMPZ = 2
        !           163:       ELSE
        !           164:          ICOMPZ = -1
        !           165:       END IF
        !           166:       IF( ICOMPZ.LT.0 ) THEN
        !           167:          INFO = -1
        !           168:       ELSE IF( N.LT.0 ) THEN
        !           169:          INFO = -2
        !           170:       ELSE IF( ( LDZ.LT.1 ) .OR.
        !           171:      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
        !           172:          INFO = -6
        !           173:       END IF
        !           174: *
        !           175:       IF( INFO.EQ.0 ) THEN
        !           176: *
        !           177: *        Compute the workspace requirements
        !           178: *
        !           179:          SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
        !           180:          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
        !           181:             LIWMIN = 1
        !           182:             LWMIN = 1
        !           183:          ELSE IF( N.LE.SMLSIZ ) THEN
        !           184:             LIWMIN = 1
        !           185:             LWMIN = 2*( N - 1 )
        !           186:          ELSE
        !           187:             LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
        !           188:             IF( 2**LGN.LT.N )
        !           189:      $         LGN = LGN + 1
        !           190:             IF( 2**LGN.LT.N )
        !           191:      $         LGN = LGN + 1
        !           192:             IF( ICOMPZ.EQ.1 ) THEN
        !           193:                LWMIN = 1 + 3*N + 2*N*LGN + 3*N**2
        !           194:                LIWMIN = 6 + 6*N + 5*N*LGN
        !           195:             ELSE IF( ICOMPZ.EQ.2 ) THEN
        !           196:                LWMIN = 1 + 4*N + N**2
        !           197:                LIWMIN = 3 + 5*N
        !           198:             END IF
        !           199:          END IF
        !           200:          WORK( 1 ) = LWMIN
        !           201:          IWORK( 1 ) = LIWMIN
        !           202: *
        !           203:          IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
        !           204:             INFO = -8
        !           205:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
        !           206:             INFO = -10
        !           207:          END IF
        !           208:       END IF
        !           209: *
        !           210:       IF( INFO.NE.0 ) THEN
        !           211:          CALL XERBLA( 'DSTEDC', -INFO )
        !           212:          RETURN
        !           213:       ELSE IF (LQUERY) THEN
        !           214:          RETURN
        !           215:       END IF
        !           216: *
        !           217: *     Quick return if possible
        !           218: *
        !           219:       IF( N.EQ.0 )
        !           220:      $   RETURN
        !           221:       IF( N.EQ.1 ) THEN
        !           222:          IF( ICOMPZ.NE.0 )
        !           223:      $      Z( 1, 1 ) = ONE
        !           224:          RETURN
        !           225:       END IF
        !           226: *
        !           227: *     If the following conditional clause is removed, then the routine
        !           228: *     will use the Divide and Conquer routine to compute only the
        !           229: *     eigenvalues, which requires (3N + 3N**2) real workspace and
        !           230: *     (2 + 5N + 2N lg(N)) integer workspace.
        !           231: *     Since on many architectures DSTERF is much faster than any other
        !           232: *     algorithm for finding eigenvalues only, it is used here
        !           233: *     as the default. If the conditional clause is removed, then
        !           234: *     information on the size of workspace needs to be changed.
        !           235: *
        !           236: *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
        !           237: *
        !           238:       IF( ICOMPZ.EQ.0 ) THEN
        !           239:          CALL DSTERF( N, D, E, INFO )
        !           240:          GO TO 50
        !           241:       END IF
        !           242: *
        !           243: *     If N is smaller than the minimum divide size (SMLSIZ+1), then
        !           244: *     solve the problem with another solver.
        !           245: *
        !           246:       IF( N.LE.SMLSIZ ) THEN
        !           247: *
        !           248:          CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
        !           249: *
        !           250:       ELSE
        !           251: *
        !           252: *        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
        !           253: *        use.
        !           254: *
        !           255:          IF( ICOMPZ.EQ.1 ) THEN
        !           256:             STOREZ = 1 + N*N
        !           257:          ELSE
        !           258:             STOREZ = 1
        !           259:          END IF
        !           260: *
        !           261:          IF( ICOMPZ.EQ.2 ) THEN
        !           262:             CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
        !           263:          END IF
        !           264: *
        !           265: *        Scale.
        !           266: *
        !           267:          ORGNRM = DLANST( 'M', N, D, E )
        !           268:          IF( ORGNRM.EQ.ZERO )
        !           269:      $      GO TO 50
        !           270: *
        !           271:          EPS = DLAMCH( 'Epsilon' )
        !           272: *
        !           273:          START = 1
        !           274: *
        !           275: *        while ( START <= N )
        !           276: *
        !           277:    10    CONTINUE
        !           278:          IF( START.LE.N ) THEN
        !           279: *
        !           280: *           Let FINISH be the position of the next subdiagonal entry
        !           281: *           such that E( FINISH ) <= TINY or FINISH = N if no such
        !           282: *           subdiagonal exists.  The matrix identified by the elements
        !           283: *           between START and FINISH constitutes an independent
        !           284: *           sub-problem.
        !           285: *
        !           286:             FINISH = START
        !           287:    20       CONTINUE
        !           288:             IF( FINISH.LT.N ) THEN
        !           289:                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
        !           290:      $                    SQRT( ABS( D( FINISH+1 ) ) )
        !           291:                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
        !           292:                   FINISH = FINISH + 1
        !           293:                   GO TO 20
        !           294:                END IF
        !           295:             END IF
        !           296: *
        !           297: *           (Sub) Problem determined.  Compute its size and solve it.
        !           298: *
        !           299:             M = FINISH - START + 1
        !           300:             IF( M.EQ.1 ) THEN
        !           301:                START = FINISH + 1
        !           302:                GO TO 10
        !           303:             END IF
        !           304:             IF( M.GT.SMLSIZ ) THEN
        !           305: *
        !           306: *              Scale.
        !           307: *
        !           308:                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
        !           309:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
        !           310:      $                      INFO )
        !           311:                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
        !           312:      $                      M-1, INFO )
        !           313: *
        !           314:                IF( ICOMPZ.EQ.1 ) THEN
        !           315:                   STRTRW = 1
        !           316:                ELSE
        !           317:                   STRTRW = START
        !           318:                END IF
        !           319:                CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
        !           320:      $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
        !           321:      $                      WORK( STOREZ ), IWORK, INFO )
        !           322:                IF( INFO.NE.0 ) THEN
        !           323:                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
        !           324:      $                   MOD( INFO, ( M+1 ) ) + START - 1
        !           325:                   GO TO 50
        !           326:                END IF
        !           327: *
        !           328: *              Scale back.
        !           329: *
        !           330:                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
        !           331:      $                      INFO )
        !           332: *
        !           333:             ELSE
        !           334:                IF( ICOMPZ.EQ.1 ) THEN
        !           335: *
        !           336: *                 Since QR won't update a Z matrix which is larger than
        !           337: *                 the length of D, we must solve the sub-problem in a
        !           338: *                 workspace and then multiply back into Z.
        !           339: *
        !           340:                   CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
        !           341:      $                         WORK( M*M+1 ), INFO )
        !           342:                   CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
        !           343:      $                         WORK( STOREZ ), N )
        !           344:                   CALL DGEMM( 'N', 'N', N, M, M, ONE,
        !           345:      $                        WORK( STOREZ ), N, WORK, M, ZERO,
        !           346:      $                        Z( 1, START ), LDZ )
        !           347:                ELSE IF( ICOMPZ.EQ.2 ) THEN
        !           348:                   CALL DSTEQR( 'I', M, D( START ), E( START ),
        !           349:      $                         Z( START, START ), LDZ, WORK, INFO )
        !           350:                ELSE
        !           351:                   CALL DSTERF( M, D( START ), E( START ), INFO )
        !           352:                END IF
        !           353:                IF( INFO.NE.0 ) THEN
        !           354:                   INFO = START*( N+1 ) + FINISH
        !           355:                   GO TO 50
        !           356:                END IF
        !           357:             END IF
        !           358: *
        !           359:             START = FINISH + 1
        !           360:             GO TO 10
        !           361:          END IF
        !           362: *
        !           363: *        endwhile
        !           364: *
        !           365: *        If the problem split any number of times, then the eigenvalues
        !           366: *        will not be properly ordered.  Here we permute the eigenvalues
        !           367: *        (and the associated eigenvectors) into ascending order.
        !           368: *
        !           369:          IF( M.NE.N ) THEN
        !           370:             IF( ICOMPZ.EQ.0 ) THEN
        !           371: *
        !           372: *              Use Quick Sort
        !           373: *
        !           374:                CALL DLASRT( 'I', N, D, INFO )
        !           375: *
        !           376:             ELSE
        !           377: *
        !           378: *              Use Selection Sort to minimize swaps of eigenvectors
        !           379: *
        !           380:                DO 40 II = 2, N
        !           381:                   I = II - 1
        !           382:                   K = I
        !           383:                   P = D( I )
        !           384:                   DO 30 J = II, N
        !           385:                      IF( D( J ).LT.P ) THEN
        !           386:                         K = J
        !           387:                         P = D( J )
        !           388:                      END IF
        !           389:    30             CONTINUE
        !           390:                   IF( K.NE.I ) THEN
        !           391:                      D( K ) = D( I )
        !           392:                      D( I ) = P
        !           393:                      CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
        !           394:                   END IF
        !           395:    40          CONTINUE
        !           396:             END IF
        !           397:          END IF
        !           398:       END IF
        !           399: *
        !           400:    50 CONTINUE
        !           401:       WORK( 1 ) = LWMIN
        !           402:       IWORK( 1 ) = LIWMIN
        !           403: *
        !           404:       RETURN
        !           405: *
        !           406: *     End of DSTEDC
        !           407: *
        !           408:       END

CVSweb interface <joel.bertrand@systella.fr>