File:  [local] / rpl / lapack / lapack / dsptrf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSPTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSPTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   AP( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSPTRF computes the factorization of a real symmetric matrix A stored
   39: *> in packed format using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, and D is symmetric and block diagonal with
   45: *> 1-by-1 and 2-by-2 diagonal blocks.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] AP
   65: *> \verbatim
   66: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   67: *>          On entry, the upper or lower triangle of the symmetric matrix
   68: *>          A, packed columnwise in a linear array.  The j-th column of A
   69: *>          is stored in the array AP as follows:
   70: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   71: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   72: *>
   73: *>          On exit, the block diagonal matrix D and the multipliers used
   74: *>          to obtain the factor U or L, stored as a packed triangular
   75: *>          matrix overwriting A (see below for further details).
   76: *> \endverbatim
   77: *>
   78: *> \param[out] IPIV
   79: *> \verbatim
   80: *>          IPIV is INTEGER array, dimension (N)
   81: *>          Details of the interchanges and the block structure of D.
   82: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   83: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   84: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   85: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   86: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   87: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   88: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] INFO
   92: *> \verbatim
   93: *>          INFO is INTEGER
   94: *>          = 0: successful exit
   95: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   96: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   97: *>               has been completed, but the block diagonal matrix D is
   98: *>               exactly singular, and division by zero will occur if it
   99: *>               is used to solve a system of equations.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup doubleOTHERcomputational
  111: *
  112: *> \par Further Details:
  113: *  =====================
  114: *>
  115: *> \verbatim
  116: *>
  117: *>  If UPLO = 'U', then A = U*D*U**T, where
  118: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  119: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  120: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  121: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  122: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  123: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  124: *>
  125: *>             (   I    v    0   )   k-s
  126: *>     U(k) =  (   0    I    0   )   s
  127: *>             (   0    0    I   )   n-k
  128: *>                k-s   s   n-k
  129: *>
  130: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  131: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  132: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  133: *>
  134: *>  If UPLO = 'L', then A = L*D*L**T, where
  135: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  136: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  137: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  138: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  139: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  140: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  141: *>
  142: *>             (   I    0     0   )  k-1
  143: *>     L(k) =  (   0    I     0   )  s
  144: *>             (   0    v     I   )  n-k-s+1
  145: *>                k-1   s  n-k-s+1
  146: *>
  147: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  148: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  149: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  150: *> \endverbatim
  151: *
  152: *> \par Contributors:
  153: *  ==================
  154: *>
  155: *>  J. Lewis, Boeing Computer Services Company
  156: *>
  157: *  =====================================================================
  158:       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  159: *
  160: *  -- LAPACK computational routine --
  161: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  162: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163: *
  164: *     .. Scalar Arguments ..
  165:       CHARACTER          UPLO
  166:       INTEGER            INFO, N
  167: *     ..
  168: *     .. Array Arguments ..
  169:       INTEGER            IPIV( * )
  170:       DOUBLE PRECISION   AP( * )
  171: *     ..
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ZERO, ONE
  177:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  178:       DOUBLE PRECISION   EIGHT, SEVTEN
  179:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  180: *     ..
  181: *     .. Local Scalars ..
  182:       LOGICAL            UPPER
  183:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  184:      $                   KSTEP, KX, NPP
  185:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  186:      $                   ROWMAX, T, WK, WKM1, WKP1
  187: *     ..
  188: *     .. External Functions ..
  189:       LOGICAL            LSAME
  190:       INTEGER            IDAMAX
  191:       EXTERNAL           LSAME, IDAMAX
  192: *     ..
  193: *     .. External Subroutines ..
  194:       EXTERNAL           DSCAL, DSPR, DSWAP, XERBLA
  195: *     ..
  196: *     .. Intrinsic Functions ..
  197:       INTRINSIC          ABS, MAX, SQRT
  198: *     ..
  199: *     .. Executable Statements ..
  200: *
  201: *     Test the input parameters.
  202: *
  203:       INFO = 0
  204:       UPPER = LSAME( UPLO, 'U' )
  205:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206:          INFO = -1
  207:       ELSE IF( N.LT.0 ) THEN
  208:          INFO = -2
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'DSPTRF', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215: *     Initialize ALPHA for use in choosing pivot block size.
  216: *
  217:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  218: *
  219:       IF( UPPER ) THEN
  220: *
  221: *        Factorize A as U*D*U**T using the upper triangle of A
  222: *
  223: *        K is the main loop index, decreasing from N to 1 in steps of
  224: *        1 or 2
  225: *
  226:          K = N
  227:          KC = ( N-1 )*N / 2 + 1
  228:    10    CONTINUE
  229:          KNC = KC
  230: *
  231: *        If K < 1, exit from loop
  232: *
  233:          IF( K.LT.1 )
  234:      $      GO TO 110
  235:          KSTEP = 1
  236: *
  237: *        Determine rows and columns to be interchanged and whether
  238: *        a 1-by-1 or 2-by-2 pivot block will be used
  239: *
  240:          ABSAKK = ABS( AP( KC+K-1 ) )
  241: *
  242: *        IMAX is the row-index of the largest off-diagonal element in
  243: *        column K, and COLMAX is its absolute value
  244: *
  245:          IF( K.GT.1 ) THEN
  246:             IMAX = IDAMAX( K-1, AP( KC ), 1 )
  247:             COLMAX = ABS( AP( KC+IMAX-1 ) )
  248:          ELSE
  249:             COLMAX = ZERO
  250:          END IF
  251: *
  252:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  253: *
  254: *           Column K is zero: set INFO and continue
  255: *
  256:             IF( INFO.EQ.0 )
  257:      $         INFO = K
  258:             KP = K
  259:          ELSE
  260:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  261: *
  262: *              no interchange, use 1-by-1 pivot block
  263: *
  264:                KP = K
  265:             ELSE
  266: *
  267:                ROWMAX = ZERO
  268:                JMAX = IMAX
  269:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  270:                DO 20 J = IMAX + 1, K
  271:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  272:                      ROWMAX = ABS( AP( KX ) )
  273:                      JMAX = J
  274:                   END IF
  275:                   KX = KX + J
  276:    20          CONTINUE
  277:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  278:                IF( IMAX.GT.1 ) THEN
  279:                   JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
  280:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  281:                END IF
  282: *
  283:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  284: *
  285: *                 no interchange, use 1-by-1 pivot block
  286: *
  287:                   KP = K
  288:                ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  289: *
  290: *                 interchange rows and columns K and IMAX, use 1-by-1
  291: *                 pivot block
  292: *
  293:                   KP = IMAX
  294:                ELSE
  295: *
  296: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  297: *                 pivot block
  298: *
  299:                   KP = IMAX
  300:                   KSTEP = 2
  301:                END IF
  302:             END IF
  303: *
  304:             KK = K - KSTEP + 1
  305:             IF( KSTEP.EQ.2 )
  306:      $         KNC = KNC - K + 1
  307:             IF( KP.NE.KK ) THEN
  308: *
  309: *              Interchange rows and columns KK and KP in the leading
  310: *              submatrix A(1:k,1:k)
  311: *
  312:                CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  313:                KX = KPC + KP - 1
  314:                DO 30 J = KP + 1, KK - 1
  315:                   KX = KX + J - 1
  316:                   T = AP( KNC+J-1 )
  317:                   AP( KNC+J-1 ) = AP( KX )
  318:                   AP( KX ) = T
  319:    30          CONTINUE
  320:                T = AP( KNC+KK-1 )
  321:                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  322:                AP( KPC+KP-1 ) = T
  323:                IF( KSTEP.EQ.2 ) THEN
  324:                   T = AP( KC+K-2 )
  325:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  326:                   AP( KC+KP-1 ) = T
  327:                END IF
  328:             END IF
  329: *
  330: *           Update the leading submatrix
  331: *
  332:             IF( KSTEP.EQ.1 ) THEN
  333: *
  334: *              1-by-1 pivot block D(k): column k now holds
  335: *
  336: *              W(k) = U(k)*D(k)
  337: *
  338: *              where U(k) is the k-th column of U
  339: *
  340: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  341: *
  342: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  343: *
  344:                R1 = ONE / AP( KC+K-1 )
  345:                CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  346: *
  347: *              Store U(k) in column k
  348: *
  349:                CALL DSCAL( K-1, R1, AP( KC ), 1 )
  350:             ELSE
  351: *
  352: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  353: *
  354: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  355: *
  356: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  357: *              of U
  358: *
  359: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  360: *
  361: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  362: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  363: *
  364:                IF( K.GT.2 ) THEN
  365: *
  366:                   D12 = AP( K-1+( K-1 )*K / 2 )
  367:                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  368:                   D11 = AP( K+( K-1 )*K / 2 ) / D12
  369:                   T = ONE / ( D11*D22-ONE )
  370:                   D12 = T / D12
  371: *
  372:                   DO 50 J = K - 2, 1, -1
  373:                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  374:      $                      AP( J+( K-1 )*K / 2 ) )
  375:                      WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  376:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  377:                      DO 40 I = J, 1, -1
  378:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  379:      $                     AP( I+( K-1 )*K / 2 )*WK -
  380:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  381:    40                CONTINUE
  382:                      AP( J+( K-1 )*K / 2 ) = WK
  383:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  384:    50             CONTINUE
  385: *
  386:                END IF
  387: *
  388:             END IF
  389:          END IF
  390: *
  391: *        Store details of the interchanges in IPIV
  392: *
  393:          IF( KSTEP.EQ.1 ) THEN
  394:             IPIV( K ) = KP
  395:          ELSE
  396:             IPIV( K ) = -KP
  397:             IPIV( K-1 ) = -KP
  398:          END IF
  399: *
  400: *        Decrease K and return to the start of the main loop
  401: *
  402:          K = K - KSTEP
  403:          KC = KNC - K
  404:          GO TO 10
  405: *
  406:       ELSE
  407: *
  408: *        Factorize A as L*D*L**T using the lower triangle of A
  409: *
  410: *        K is the main loop index, increasing from 1 to N in steps of
  411: *        1 or 2
  412: *
  413:          K = 1
  414:          KC = 1
  415:          NPP = N*( N+1 ) / 2
  416:    60    CONTINUE
  417:          KNC = KC
  418: *
  419: *        If K > N, exit from loop
  420: *
  421:          IF( K.GT.N )
  422:      $      GO TO 110
  423:          KSTEP = 1
  424: *
  425: *        Determine rows and columns to be interchanged and whether
  426: *        a 1-by-1 or 2-by-2 pivot block will be used
  427: *
  428:          ABSAKK = ABS( AP( KC ) )
  429: *
  430: *        IMAX is the row-index of the largest off-diagonal element in
  431: *        column K, and COLMAX is its absolute value
  432: *
  433:          IF( K.LT.N ) THEN
  434:             IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
  435:             COLMAX = ABS( AP( KC+IMAX-K ) )
  436:          ELSE
  437:             COLMAX = ZERO
  438:          END IF
  439: *
  440:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  441: *
  442: *           Column K is zero: set INFO and continue
  443: *
  444:             IF( INFO.EQ.0 )
  445:      $         INFO = K
  446:             KP = K
  447:          ELSE
  448:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  449: *
  450: *              no interchange, use 1-by-1 pivot block
  451: *
  452:                KP = K
  453:             ELSE
  454: *
  455: *              JMAX is the column-index of the largest off-diagonal
  456: *              element in row IMAX, and ROWMAX is its absolute value
  457: *
  458:                ROWMAX = ZERO
  459:                KX = KC + IMAX - K
  460:                DO 70 J = K, IMAX - 1
  461:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  462:                      ROWMAX = ABS( AP( KX ) )
  463:                      JMAX = J
  464:                   END IF
  465:                   KX = KX + N - J
  466:    70          CONTINUE
  467:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  468:                IF( IMAX.LT.N ) THEN
  469:                   JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
  470:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  471:                END IF
  472: *
  473:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  474: *
  475: *                 no interchange, use 1-by-1 pivot block
  476: *
  477:                   KP = K
  478:                ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  479: *
  480: *                 interchange rows and columns K and IMAX, use 1-by-1
  481: *                 pivot block
  482: *
  483:                   KP = IMAX
  484:                ELSE
  485: *
  486: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  487: *                 pivot block
  488: *
  489:                   KP = IMAX
  490:                   KSTEP = 2
  491:                END IF
  492:             END IF
  493: *
  494:             KK = K + KSTEP - 1
  495:             IF( KSTEP.EQ.2 )
  496:      $         KNC = KNC + N - K + 1
  497:             IF( KP.NE.KK ) THEN
  498: *
  499: *              Interchange rows and columns KK and KP in the trailing
  500: *              submatrix A(k:n,k:n)
  501: *
  502:                IF( KP.LT.N )
  503:      $            CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  504:      $                        1 )
  505:                KX = KNC + KP - KK
  506:                DO 80 J = KK + 1, KP - 1
  507:                   KX = KX + N - J + 1
  508:                   T = AP( KNC+J-KK )
  509:                   AP( KNC+J-KK ) = AP( KX )
  510:                   AP( KX ) = T
  511:    80          CONTINUE
  512:                T = AP( KNC )
  513:                AP( KNC ) = AP( KPC )
  514:                AP( KPC ) = T
  515:                IF( KSTEP.EQ.2 ) THEN
  516:                   T = AP( KC+1 )
  517:                   AP( KC+1 ) = AP( KC+KP-K )
  518:                   AP( KC+KP-K ) = T
  519:                END IF
  520:             END IF
  521: *
  522: *           Update the trailing submatrix
  523: *
  524:             IF( KSTEP.EQ.1 ) THEN
  525: *
  526: *              1-by-1 pivot block D(k): column k now holds
  527: *
  528: *              W(k) = L(k)*D(k)
  529: *
  530: *              where L(k) is the k-th column of L
  531: *
  532:                IF( K.LT.N ) THEN
  533: *
  534: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  535: *
  536: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  537: *
  538:                   R1 = ONE / AP( KC )
  539:                   CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  540:      $                       AP( KC+N-K+1 ) )
  541: *
  542: *                 Store L(k) in column K
  543: *
  544:                   CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
  545:                END IF
  546:             ELSE
  547: *
  548: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  549: *
  550: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  551: *
  552: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  553: *              of L
  554: *
  555:                IF( K.LT.N-1 ) THEN
  556: *
  557: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  558: *
  559: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  560: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  561: *
  562: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  563: *                 columns of L
  564: *
  565:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  566:                   D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  567:                   D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  568:                   T = ONE / ( D11*D22-ONE )
  569:                   D21 = T / D21
  570: *
  571:                   DO 100 J = K + 2, N
  572:                      WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  573:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  574:                      WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  575:      $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  576: *
  577:                      DO 90 I = J, N
  578:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  579:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  580:      $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  581:    90                CONTINUE
  582: *
  583:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  584:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  585: *
  586:   100             CONTINUE
  587:                END IF
  588:             END IF
  589:          END IF
  590: *
  591: *        Store details of the interchanges in IPIV
  592: *
  593:          IF( KSTEP.EQ.1 ) THEN
  594:             IPIV( K ) = KP
  595:          ELSE
  596:             IPIV( K ) = -KP
  597:             IPIV( K+1 ) = -KP
  598:          END IF
  599: *
  600: *        Increase K and return to the start of the main loop
  601: *
  602:          K = K + KSTEP
  603:          KC = KNC + N - K + 2
  604:          GO TO 60
  605: *
  606:       END IF
  607: *
  608:   110 CONTINUE
  609:       RETURN
  610: *
  611: *     End of DSPTRF
  612: *
  613:       END

CVSweb interface <joel.bertrand@systella.fr>