File:  [local] / rpl / lapack / lapack / dsptrf.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:25 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DSPTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSPTRF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   AP( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DSPTRF computes the factorization of a real symmetric matrix A stored
   39: *> in packed format using the Bunch-Kaufman diagonal pivoting method:
   40: *>
   41: *>    A = U*D*U**T  or  A = L*D*L**T
   42: *>
   43: *> where U (or L) is a product of permutation and unit upper (lower)
   44: *> triangular matrices, and D is symmetric and block diagonal with
   45: *> 1-by-1 and 2-by-2 diagonal blocks.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] AP
   65: *> \verbatim
   66: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   67: *>          On entry, the upper or lower triangle of the symmetric matrix
   68: *>          A, packed columnwise in a linear array.  The j-th column of A
   69: *>          is stored in the array AP as follows:
   70: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   71: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   72: *>
   73: *>          On exit, the block diagonal matrix D and the multipliers used
   74: *>          to obtain the factor U or L, stored as a packed triangular
   75: *>          matrix overwriting A (see below for further details).
   76: *> \endverbatim
   77: *>
   78: *> \param[out] IPIV
   79: *> \verbatim
   80: *>          IPIV is INTEGER array, dimension (N)
   81: *>          Details of the interchanges and the block structure of D.
   82: *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   83: *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
   84: *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   85: *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   86: *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   87: *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   88: *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   89: *> \endverbatim
   90: *>
   91: *> \param[out] INFO
   92: *> \verbatim
   93: *>          INFO is INTEGER
   94: *>          = 0: successful exit
   95: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   96: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   97: *>               has been completed, but the block diagonal matrix D is
   98: *>               exactly singular, and division by zero will occur if it
   99: *>               is used to solve a system of equations.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee 
  106: *> \author Univ. of California Berkeley 
  107: *> \author Univ. of Colorado Denver 
  108: *> \author NAG Ltd. 
  109: *
  110: *> \date November 2011
  111: *
  112: *> \ingroup doubleOTHERcomputational
  113: *
  114: *> \par Further Details:
  115: *  =====================
  116: *>
  117: *> \verbatim
  118: *>
  119: *>  If UPLO = 'U', then A = U*D*U**T, where
  120: *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  121: *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  122: *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  123: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  124: *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  125: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  126: *>
  127: *>             (   I    v    0   )   k-s
  128: *>     U(k) =  (   0    I    0   )   s
  129: *>             (   0    0    I   )   n-k
  130: *>                k-s   s   n-k
  131: *>
  132: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  133: *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  134: *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
  135: *>
  136: *>  If UPLO = 'L', then A = L*D*L**T, where
  137: *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  138: *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  139: *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  140: *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  141: *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  142: *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
  143: *>
  144: *>             (   I    0     0   )  k-1
  145: *>     L(k) =  (   0    I     0   )  s
  146: *>             (   0    v     I   )  n-k-s+1
  147: *>                k-1   s  n-k-s+1
  148: *>
  149: *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  150: *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  151: *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  152: *> \endverbatim
  153: *
  154: *> \par Contributors:
  155: *  ==================
  156: *>
  157: *>  J. Lewis, Boeing Computer Services Company
  158: *>
  159: *  =====================================================================
  160:       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  161: *
  162: *  -- LAPACK computational routine (version 3.4.0) --
  163: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  164: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  165: *     November 2011
  166: *
  167: *     .. Scalar Arguments ..
  168:       CHARACTER          UPLO
  169:       INTEGER            INFO, N
  170: *     ..
  171: *     .. Array Arguments ..
  172:       INTEGER            IPIV( * )
  173:       DOUBLE PRECISION   AP( * )
  174: *     ..
  175: *
  176: *  =====================================================================
  177: *
  178: *     .. Parameters ..
  179:       DOUBLE PRECISION   ZERO, ONE
  180:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  181:       DOUBLE PRECISION   EIGHT, SEVTEN
  182:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  183: *     ..
  184: *     .. Local Scalars ..
  185:       LOGICAL            UPPER
  186:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  187:      $                   KSTEP, KX, NPP
  188:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  189:      $                   ROWMAX, T, WK, WKM1, WKP1
  190: *     ..
  191: *     .. External Functions ..
  192:       LOGICAL            LSAME
  193:       INTEGER            IDAMAX
  194:       EXTERNAL           LSAME, IDAMAX
  195: *     ..
  196: *     .. External Subroutines ..
  197:       EXTERNAL           DSCAL, DSPR, DSWAP, XERBLA
  198: *     ..
  199: *     .. Intrinsic Functions ..
  200:       INTRINSIC          ABS, MAX, SQRT
  201: *     ..
  202: *     .. Executable Statements ..
  203: *
  204: *     Test the input parameters.
  205: *
  206:       INFO = 0
  207:       UPPER = LSAME( UPLO, 'U' )
  208:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  209:          INFO = -1
  210:       ELSE IF( N.LT.0 ) THEN
  211:          INFO = -2
  212:       END IF
  213:       IF( INFO.NE.0 ) THEN
  214:          CALL XERBLA( 'DSPTRF', -INFO )
  215:          RETURN
  216:       END IF
  217: *
  218: *     Initialize ALPHA for use in choosing pivot block size.
  219: *
  220:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  221: *
  222:       IF( UPPER ) THEN
  223: *
  224: *        Factorize A as U*D*U**T using the upper triangle of A
  225: *
  226: *        K is the main loop index, decreasing from N to 1 in steps of
  227: *        1 or 2
  228: *
  229:          K = N
  230:          KC = ( N-1 )*N / 2 + 1
  231:    10    CONTINUE
  232:          KNC = KC
  233: *
  234: *        If K < 1, exit from loop
  235: *
  236:          IF( K.LT.1 )
  237:      $      GO TO 110
  238:          KSTEP = 1
  239: *
  240: *        Determine rows and columns to be interchanged and whether
  241: *        a 1-by-1 or 2-by-2 pivot block will be used
  242: *
  243:          ABSAKK = ABS( AP( KC+K-1 ) )
  244: *
  245: *        IMAX is the row-index of the largest off-diagonal element in
  246: *        column K, and COLMAX is its absolute value
  247: *
  248:          IF( K.GT.1 ) THEN
  249:             IMAX = IDAMAX( K-1, AP( KC ), 1 )
  250:             COLMAX = ABS( AP( KC+IMAX-1 ) )
  251:          ELSE
  252:             COLMAX = ZERO
  253:          END IF
  254: *
  255:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  256: *
  257: *           Column K is zero: set INFO and continue
  258: *
  259:             IF( INFO.EQ.0 )
  260:      $         INFO = K
  261:             KP = K
  262:          ELSE
  263:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  264: *
  265: *              no interchange, use 1-by-1 pivot block
  266: *
  267:                KP = K
  268:             ELSE
  269: *
  270:                ROWMAX = ZERO
  271:                JMAX = IMAX
  272:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  273:                DO 20 J = IMAX + 1, K
  274:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  275:                      ROWMAX = ABS( AP( KX ) )
  276:                      JMAX = J
  277:                   END IF
  278:                   KX = KX + J
  279:    20          CONTINUE
  280:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  281:                IF( IMAX.GT.1 ) THEN
  282:                   JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
  283:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  284:                END IF
  285: *
  286:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  287: *
  288: *                 no interchange, use 1-by-1 pivot block
  289: *
  290:                   KP = K
  291:                ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  292: *
  293: *                 interchange rows and columns K and IMAX, use 1-by-1
  294: *                 pivot block
  295: *
  296:                   KP = IMAX
  297:                ELSE
  298: *
  299: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  300: *                 pivot block
  301: *
  302:                   KP = IMAX
  303:                   KSTEP = 2
  304:                END IF
  305:             END IF
  306: *
  307:             KK = K - KSTEP + 1
  308:             IF( KSTEP.EQ.2 )
  309:      $         KNC = KNC - K + 1
  310:             IF( KP.NE.KK ) THEN
  311: *
  312: *              Interchange rows and columns KK and KP in the leading
  313: *              submatrix A(1:k,1:k)
  314: *
  315:                CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  316:                KX = KPC + KP - 1
  317:                DO 30 J = KP + 1, KK - 1
  318:                   KX = KX + J - 1
  319:                   T = AP( KNC+J-1 )
  320:                   AP( KNC+J-1 ) = AP( KX )
  321:                   AP( KX ) = T
  322:    30          CONTINUE
  323:                T = AP( KNC+KK-1 )
  324:                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  325:                AP( KPC+KP-1 ) = T
  326:                IF( KSTEP.EQ.2 ) THEN
  327:                   T = AP( KC+K-2 )
  328:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  329:                   AP( KC+KP-1 ) = T
  330:                END IF
  331:             END IF
  332: *
  333: *           Update the leading submatrix
  334: *
  335:             IF( KSTEP.EQ.1 ) THEN
  336: *
  337: *              1-by-1 pivot block D(k): column k now holds
  338: *
  339: *              W(k) = U(k)*D(k)
  340: *
  341: *              where U(k) is the k-th column of U
  342: *
  343: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  344: *
  345: *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  346: *
  347:                R1 = ONE / AP( KC+K-1 )
  348:                CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  349: *
  350: *              Store U(k) in column k
  351: *
  352:                CALL DSCAL( K-1, R1, AP( KC ), 1 )
  353:             ELSE
  354: *
  355: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  356: *
  357: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  358: *
  359: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  360: *              of U
  361: *
  362: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  363: *
  364: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  365: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  366: *
  367:                IF( K.GT.2 ) THEN
  368: *
  369:                   D12 = AP( K-1+( K-1 )*K / 2 )
  370:                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  371:                   D11 = AP( K+( K-1 )*K / 2 ) / D12
  372:                   T = ONE / ( D11*D22-ONE )
  373:                   D12 = T / D12
  374: *
  375:                   DO 50 J = K - 2, 1, -1
  376:                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  377:      $                      AP( J+( K-1 )*K / 2 ) )
  378:                      WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  379:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  380:                      DO 40 I = J, 1, -1
  381:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  382:      $                     AP( I+( K-1 )*K / 2 )*WK -
  383:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  384:    40                CONTINUE
  385:                      AP( J+( K-1 )*K / 2 ) = WK
  386:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  387:    50             CONTINUE
  388: *
  389:                END IF
  390: *
  391:             END IF
  392:          END IF
  393: *
  394: *        Store details of the interchanges in IPIV
  395: *
  396:          IF( KSTEP.EQ.1 ) THEN
  397:             IPIV( K ) = KP
  398:          ELSE
  399:             IPIV( K ) = -KP
  400:             IPIV( K-1 ) = -KP
  401:          END IF
  402: *
  403: *        Decrease K and return to the start of the main loop
  404: *
  405:          K = K - KSTEP
  406:          KC = KNC - K
  407:          GO TO 10
  408: *
  409:       ELSE
  410: *
  411: *        Factorize A as L*D*L**T using the lower triangle of A
  412: *
  413: *        K is the main loop index, increasing from 1 to N in steps of
  414: *        1 or 2
  415: *
  416:          K = 1
  417:          KC = 1
  418:          NPP = N*( N+1 ) / 2
  419:    60    CONTINUE
  420:          KNC = KC
  421: *
  422: *        If K > N, exit from loop
  423: *
  424:          IF( K.GT.N )
  425:      $      GO TO 110
  426:          KSTEP = 1
  427: *
  428: *        Determine rows and columns to be interchanged and whether
  429: *        a 1-by-1 or 2-by-2 pivot block will be used
  430: *
  431:          ABSAKK = ABS( AP( KC ) )
  432: *
  433: *        IMAX is the row-index of the largest off-diagonal element in
  434: *        column K, and COLMAX is its absolute value
  435: *
  436:          IF( K.LT.N ) THEN
  437:             IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
  438:             COLMAX = ABS( AP( KC+IMAX-K ) )
  439:          ELSE
  440:             COLMAX = ZERO
  441:          END IF
  442: *
  443:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  444: *
  445: *           Column K is zero: set INFO and continue
  446: *
  447:             IF( INFO.EQ.0 )
  448:      $         INFO = K
  449:             KP = K
  450:          ELSE
  451:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  452: *
  453: *              no interchange, use 1-by-1 pivot block
  454: *
  455:                KP = K
  456:             ELSE
  457: *
  458: *              JMAX is the column-index of the largest off-diagonal
  459: *              element in row IMAX, and ROWMAX is its absolute value
  460: *
  461:                ROWMAX = ZERO
  462:                KX = KC + IMAX - K
  463:                DO 70 J = K, IMAX - 1
  464:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  465:                      ROWMAX = ABS( AP( KX ) )
  466:                      JMAX = J
  467:                   END IF
  468:                   KX = KX + N - J
  469:    70          CONTINUE
  470:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  471:                IF( IMAX.LT.N ) THEN
  472:                   JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
  473:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  474:                END IF
  475: *
  476:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  477: *
  478: *                 no interchange, use 1-by-1 pivot block
  479: *
  480:                   KP = K
  481:                ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  482: *
  483: *                 interchange rows and columns K and IMAX, use 1-by-1
  484: *                 pivot block
  485: *
  486:                   KP = IMAX
  487:                ELSE
  488: *
  489: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  490: *                 pivot block
  491: *
  492:                   KP = IMAX
  493:                   KSTEP = 2
  494:                END IF
  495:             END IF
  496: *
  497:             KK = K + KSTEP - 1
  498:             IF( KSTEP.EQ.2 )
  499:      $         KNC = KNC + N - K + 1
  500:             IF( KP.NE.KK ) THEN
  501: *
  502: *              Interchange rows and columns KK and KP in the trailing
  503: *              submatrix A(k:n,k:n)
  504: *
  505:                IF( KP.LT.N )
  506:      $            CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  507:      $                        1 )
  508:                KX = KNC + KP - KK
  509:                DO 80 J = KK + 1, KP - 1
  510:                   KX = KX + N - J + 1
  511:                   T = AP( KNC+J-KK )
  512:                   AP( KNC+J-KK ) = AP( KX )
  513:                   AP( KX ) = T
  514:    80          CONTINUE
  515:                T = AP( KNC )
  516:                AP( KNC ) = AP( KPC )
  517:                AP( KPC ) = T
  518:                IF( KSTEP.EQ.2 ) THEN
  519:                   T = AP( KC+1 )
  520:                   AP( KC+1 ) = AP( KC+KP-K )
  521:                   AP( KC+KP-K ) = T
  522:                END IF
  523:             END IF
  524: *
  525: *           Update the trailing submatrix
  526: *
  527:             IF( KSTEP.EQ.1 ) THEN
  528: *
  529: *              1-by-1 pivot block D(k): column k now holds
  530: *
  531: *              W(k) = L(k)*D(k)
  532: *
  533: *              where L(k) is the k-th column of L
  534: *
  535:                IF( K.LT.N ) THEN
  536: *
  537: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  538: *
  539: *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  540: *
  541:                   R1 = ONE / AP( KC )
  542:                   CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  543:      $                       AP( KC+N-K+1 ) )
  544: *
  545: *                 Store L(k) in column K
  546: *
  547:                   CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
  548:                END IF
  549:             ELSE
  550: *
  551: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  552: *
  553: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  554: *
  555: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  556: *              of L
  557: *
  558:                IF( K.LT.N-1 ) THEN
  559: *
  560: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  561: *
  562: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  563: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  564: *
  565: *                 where L(k) and L(k+1) are the k-th and (k+1)-th
  566: *                 columns of L
  567: *
  568:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  569:                   D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  570:                   D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  571:                   T = ONE / ( D11*D22-ONE )
  572:                   D21 = T / D21
  573: *
  574:                   DO 100 J = K + 2, N
  575:                      WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  576:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  577:                      WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  578:      $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  579: *
  580:                      DO 90 I = J, N
  581:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  582:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  583:      $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  584:    90                CONTINUE
  585: *
  586:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  587:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  588: *
  589:   100             CONTINUE
  590:                END IF
  591:             END IF
  592:          END IF
  593: *
  594: *        Store details of the interchanges in IPIV
  595: *
  596:          IF( KSTEP.EQ.1 ) THEN
  597:             IPIV( K ) = KP
  598:          ELSE
  599:             IPIV( K ) = -KP
  600:             IPIV( K+1 ) = -KP
  601:          END IF
  602: *
  603: *        Increase K and return to the start of the main loop
  604: *
  605:          K = K + KSTEP
  606:          KC = KNC + N - K + 2
  607:          GO TO 60
  608: *
  609:       END IF
  610: *
  611:   110 CONTINUE
  612:       RETURN
  613: *
  614: *     End of DSPTRF
  615: *
  616:       END

CVSweb interface <joel.bertrand@systella.fr>