File:  [local] / rpl / lapack / lapack / dsptrf.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       INTEGER            IPIV( * )
   14:       DOUBLE PRECISION   AP( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DSPTRF computes the factorization of a real symmetric matrix A stored
   21: *  in packed format using the Bunch-Kaufman diagonal pivoting method:
   22: *
   23: *     A = U*D*U**T  or  A = L*D*L**T
   24: *
   25: *  where U (or L) is a product of permutation and unit upper (lower)
   26: *  triangular matrices, and D is symmetric and block diagonal with
   27: *  1-by-1 and 2-by-2 diagonal blocks.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   40: *          On entry, the upper or lower triangle of the symmetric matrix
   41: *          A, packed columnwise in a linear array.  The j-th column of A
   42: *          is stored in the array AP as follows:
   43: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   44: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   45: *
   46: *          On exit, the block diagonal matrix D and the multipliers used
   47: *          to obtain the factor U or L, stored as a packed triangular
   48: *          matrix overwriting A (see below for further details).
   49: *
   50: *  IPIV    (output) INTEGER array, dimension (N)
   51: *          Details of the interchanges and the block structure of D.
   52: *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
   53: *          interchanged and D(k,k) is a 1-by-1 diagonal block.
   54: *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
   55: *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
   56: *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
   57: *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
   58: *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
   59: *
   60: *  INFO    (output) INTEGER
   61: *          = 0: successful exit
   62: *          < 0: if INFO = -i, the i-th argument had an illegal value
   63: *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
   64: *               has been completed, but the block diagonal matrix D is
   65: *               exactly singular, and division by zero will occur if it
   66: *               is used to solve a system of equations.
   67: *
   68: *  Further Details
   69: *  ===============
   70: *
   71: *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
   72: *         Company
   73: *
   74: *  If UPLO = 'U', then A = U*D*U', where
   75: *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
   76: *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
   77: *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   78: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   79: *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
   80: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   81: *
   82: *             (   I    v    0   )   k-s
   83: *     U(k) =  (   0    I    0   )   s
   84: *             (   0    0    I   )   n-k
   85: *                k-s   s   n-k
   86: *
   87: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
   88: *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
   89: *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
   90: *
   91: *  If UPLO = 'L', then A = L*D*L', where
   92: *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
   93: *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
   94: *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
   95: *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
   96: *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
   97: *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
   98: *
   99: *             (   I    0     0   )  k-1
  100: *     L(k) =  (   0    I     0   )  s
  101: *             (   0    v     I   )  n-k-s+1
  102: *                k-1   s  n-k-s+1
  103: *
  104: *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  105: *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  106: *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  107: *
  108: *  =====================================================================
  109: *
  110: *     .. Parameters ..
  111:       DOUBLE PRECISION   ZERO, ONE
  112:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  113:       DOUBLE PRECISION   EIGHT, SEVTEN
  114:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  115: *     ..
  116: *     .. Local Scalars ..
  117:       LOGICAL            UPPER
  118:       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  119:      $                   KSTEP, KX, NPP
  120:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  121:      $                   ROWMAX, T, WK, WKM1, WKP1
  122: *     ..
  123: *     .. External Functions ..
  124:       LOGICAL            LSAME
  125:       INTEGER            IDAMAX
  126:       EXTERNAL           LSAME, IDAMAX
  127: *     ..
  128: *     .. External Subroutines ..
  129:       EXTERNAL           DSCAL, DSPR, DSWAP, XERBLA
  130: *     ..
  131: *     .. Intrinsic Functions ..
  132:       INTRINSIC          ABS, MAX, SQRT
  133: *     ..
  134: *     .. Executable Statements ..
  135: *
  136: *     Test the input parameters.
  137: *
  138:       INFO = 0
  139:       UPPER = LSAME( UPLO, 'U' )
  140:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  141:          INFO = -1
  142:       ELSE IF( N.LT.0 ) THEN
  143:          INFO = -2
  144:       END IF
  145:       IF( INFO.NE.0 ) THEN
  146:          CALL XERBLA( 'DSPTRF', -INFO )
  147:          RETURN
  148:       END IF
  149: *
  150: *     Initialize ALPHA for use in choosing pivot block size.
  151: *
  152:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  153: *
  154:       IF( UPPER ) THEN
  155: *
  156: *        Factorize A as U*D*U' using the upper triangle of A
  157: *
  158: *        K is the main loop index, decreasing from N to 1 in steps of
  159: *        1 or 2
  160: *
  161:          K = N
  162:          KC = ( N-1 )*N / 2 + 1
  163:    10    CONTINUE
  164:          KNC = KC
  165: *
  166: *        If K < 1, exit from loop
  167: *
  168:          IF( K.LT.1 )
  169:      $      GO TO 110
  170:          KSTEP = 1
  171: *
  172: *        Determine rows and columns to be interchanged and whether
  173: *        a 1-by-1 or 2-by-2 pivot block will be used
  174: *
  175:          ABSAKK = ABS( AP( KC+K-1 ) )
  176: *
  177: *        IMAX is the row-index of the largest off-diagonal element in
  178: *        column K, and COLMAX is its absolute value
  179: *
  180:          IF( K.GT.1 ) THEN
  181:             IMAX = IDAMAX( K-1, AP( KC ), 1 )
  182:             COLMAX = ABS( AP( KC+IMAX-1 ) )
  183:          ELSE
  184:             COLMAX = ZERO
  185:          END IF
  186: *
  187:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  188: *
  189: *           Column K is zero: set INFO and continue
  190: *
  191:             IF( INFO.EQ.0 )
  192:      $         INFO = K
  193:             KP = K
  194:          ELSE
  195:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  196: *
  197: *              no interchange, use 1-by-1 pivot block
  198: *
  199:                KP = K
  200:             ELSE
  201: *
  202: *              JMAX is the column-index of the largest off-diagonal
  203: *              element in row IMAX, and ROWMAX is its absolute value
  204: *
  205:                ROWMAX = ZERO
  206:                JMAX = IMAX
  207:                KX = IMAX*( IMAX+1 ) / 2 + IMAX
  208:                DO 20 J = IMAX + 1, K
  209:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  210:                      ROWMAX = ABS( AP( KX ) )
  211:                      JMAX = J
  212:                   END IF
  213:                   KX = KX + J
  214:    20          CONTINUE
  215:                KPC = ( IMAX-1 )*IMAX / 2 + 1
  216:                IF( IMAX.GT.1 ) THEN
  217:                   JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
  218:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  219:                END IF
  220: *
  221:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  222: *
  223: *                 no interchange, use 1-by-1 pivot block
  224: *
  225:                   KP = K
  226:                ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  227: *
  228: *                 interchange rows and columns K and IMAX, use 1-by-1
  229: *                 pivot block
  230: *
  231:                   KP = IMAX
  232:                ELSE
  233: *
  234: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  235: *                 pivot block
  236: *
  237:                   KP = IMAX
  238:                   KSTEP = 2
  239:                END IF
  240:             END IF
  241: *
  242:             KK = K - KSTEP + 1
  243:             IF( KSTEP.EQ.2 )
  244:      $         KNC = KNC - K + 1
  245:             IF( KP.NE.KK ) THEN
  246: *
  247: *              Interchange rows and columns KK and KP in the leading
  248: *              submatrix A(1:k,1:k)
  249: *
  250:                CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  251:                KX = KPC + KP - 1
  252:                DO 30 J = KP + 1, KK - 1
  253:                   KX = KX + J - 1
  254:                   T = AP( KNC+J-1 )
  255:                   AP( KNC+J-1 ) = AP( KX )
  256:                   AP( KX ) = T
  257:    30          CONTINUE
  258:                T = AP( KNC+KK-1 )
  259:                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  260:                AP( KPC+KP-1 ) = T
  261:                IF( KSTEP.EQ.2 ) THEN
  262:                   T = AP( KC+K-2 )
  263:                   AP( KC+K-2 ) = AP( KC+KP-1 )
  264:                   AP( KC+KP-1 ) = T
  265:                END IF
  266:             END IF
  267: *
  268: *           Update the leading submatrix
  269: *
  270:             IF( KSTEP.EQ.1 ) THEN
  271: *
  272: *              1-by-1 pivot block D(k): column k now holds
  273: *
  274: *              W(k) = U(k)*D(k)
  275: *
  276: *              where U(k) is the k-th column of U
  277: *
  278: *              Perform a rank-1 update of A(1:k-1,1:k-1) as
  279: *
  280: *              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)'
  281: *
  282:                R1 = ONE / AP( KC+K-1 )
  283:                CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  284: *
  285: *              Store U(k) in column k
  286: *
  287:                CALL DSCAL( K-1, R1, AP( KC ), 1 )
  288:             ELSE
  289: *
  290: *              2-by-2 pivot block D(k): columns k and k-1 now hold
  291: *
  292: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  293: *
  294: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  295: *              of U
  296: *
  297: *              Perform a rank-2 update of A(1:k-2,1:k-2) as
  298: *
  299: *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
  300: *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )'
  301: *
  302:                IF( K.GT.2 ) THEN
  303: *
  304:                   D12 = AP( K-1+( K-1 )*K / 2 )
  305:                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  306:                   D11 = AP( K+( K-1 )*K / 2 ) / D12
  307:                   T = ONE / ( D11*D22-ONE )
  308:                   D12 = T / D12
  309: *
  310:                   DO 50 J = K - 2, 1, -1
  311:                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  312:      $                      AP( J+( K-1 )*K / 2 ) )
  313:                      WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  314:      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
  315:                      DO 40 I = J, 1, -1
  316:                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  317:      $                     AP( I+( K-1 )*K / 2 )*WK -
  318:      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  319:    40                CONTINUE
  320:                      AP( J+( K-1 )*K / 2 ) = WK
  321:                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  322:    50             CONTINUE
  323: *
  324:                END IF
  325: *
  326:             END IF
  327:          END IF
  328: *
  329: *        Store details of the interchanges in IPIV
  330: *
  331:          IF( KSTEP.EQ.1 ) THEN
  332:             IPIV( K ) = KP
  333:          ELSE
  334:             IPIV( K ) = -KP
  335:             IPIV( K-1 ) = -KP
  336:          END IF
  337: *
  338: *        Decrease K and return to the start of the main loop
  339: *
  340:          K = K - KSTEP
  341:          KC = KNC - K
  342:          GO TO 10
  343: *
  344:       ELSE
  345: *
  346: *        Factorize A as L*D*L' using the lower triangle of A
  347: *
  348: *        K is the main loop index, increasing from 1 to N in steps of
  349: *        1 or 2
  350: *
  351:          K = 1
  352:          KC = 1
  353:          NPP = N*( N+1 ) / 2
  354:    60    CONTINUE
  355:          KNC = KC
  356: *
  357: *        If K > N, exit from loop
  358: *
  359:          IF( K.GT.N )
  360:      $      GO TO 110
  361:          KSTEP = 1
  362: *
  363: *        Determine rows and columns to be interchanged and whether
  364: *        a 1-by-1 or 2-by-2 pivot block will be used
  365: *
  366:          ABSAKK = ABS( AP( KC ) )
  367: *
  368: *        IMAX is the row-index of the largest off-diagonal element in
  369: *        column K, and COLMAX is its absolute value
  370: *
  371:          IF( K.LT.N ) THEN
  372:             IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
  373:             COLMAX = ABS( AP( KC+IMAX-K ) )
  374:          ELSE
  375:             COLMAX = ZERO
  376:          END IF
  377: *
  378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  379: *
  380: *           Column K is zero: set INFO and continue
  381: *
  382:             IF( INFO.EQ.0 )
  383:      $         INFO = K
  384:             KP = K
  385:          ELSE
  386:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  387: *
  388: *              no interchange, use 1-by-1 pivot block
  389: *
  390:                KP = K
  391:             ELSE
  392: *
  393: *              JMAX is the column-index of the largest off-diagonal
  394: *              element in row IMAX, and ROWMAX is its absolute value
  395: *
  396:                ROWMAX = ZERO
  397:                KX = KC + IMAX - K
  398:                DO 70 J = K, IMAX - 1
  399:                   IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  400:                      ROWMAX = ABS( AP( KX ) )
  401:                      JMAX = J
  402:                   END IF
  403:                   KX = KX + N - J
  404:    70          CONTINUE
  405:                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  406:                IF( IMAX.LT.N ) THEN
  407:                   JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
  408:                   ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  409:                END IF
  410: *
  411:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  412: *
  413: *                 no interchange, use 1-by-1 pivot block
  414: *
  415:                   KP = K
  416:                ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  417: *
  418: *                 interchange rows and columns K and IMAX, use 1-by-1
  419: *                 pivot block
  420: *
  421:                   KP = IMAX
  422:                ELSE
  423: *
  424: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  425: *                 pivot block
  426: *
  427:                   KP = IMAX
  428:                   KSTEP = 2
  429:                END IF
  430:             END IF
  431: *
  432:             KK = K + KSTEP - 1
  433:             IF( KSTEP.EQ.2 )
  434:      $         KNC = KNC + N - K + 1
  435:             IF( KP.NE.KK ) THEN
  436: *
  437: *              Interchange rows and columns KK and KP in the trailing
  438: *              submatrix A(k:n,k:n)
  439: *
  440:                IF( KP.LT.N )
  441:      $            CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  442:      $                        1 )
  443:                KX = KNC + KP - KK
  444:                DO 80 J = KK + 1, KP - 1
  445:                   KX = KX + N - J + 1
  446:                   T = AP( KNC+J-KK )
  447:                   AP( KNC+J-KK ) = AP( KX )
  448:                   AP( KX ) = T
  449:    80          CONTINUE
  450:                T = AP( KNC )
  451:                AP( KNC ) = AP( KPC )
  452:                AP( KPC ) = T
  453:                IF( KSTEP.EQ.2 ) THEN
  454:                   T = AP( KC+1 )
  455:                   AP( KC+1 ) = AP( KC+KP-K )
  456:                   AP( KC+KP-K ) = T
  457:                END IF
  458:             END IF
  459: *
  460: *           Update the trailing submatrix
  461: *
  462:             IF( KSTEP.EQ.1 ) THEN
  463: *
  464: *              1-by-1 pivot block D(k): column k now holds
  465: *
  466: *              W(k) = L(k)*D(k)
  467: *
  468: *              where L(k) is the k-th column of L
  469: *
  470:                IF( K.LT.N ) THEN
  471: *
  472: *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
  473: *
  474: *                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)'
  475: *
  476:                   R1 = ONE / AP( KC )
  477:                   CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  478:      $                       AP( KC+N-K+1 ) )
  479: *
  480: *                 Store L(k) in column K
  481: *
  482:                   CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
  483:                END IF
  484:             ELSE
  485: *
  486: *              2-by-2 pivot block D(k): columns K and K+1 now hold
  487: *
  488: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  489: *
  490: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  491: *              of L
  492: *
  493:                IF( K.LT.N-1 ) THEN
  494: *
  495: *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
  496: *
  497: *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )'
  498: *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )'
  499: *
  500:                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  501:                   D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  502:                   D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  503:                   T = ONE / ( D11*D22-ONE )
  504:                   D21 = T / D21
  505: *
  506:                   DO 100 J = K + 2, N
  507:                      WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  508:      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
  509:                      WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  510:      $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  511: *
  512:                      DO 90 I = J, N
  513:                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  514:      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  515:      $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  516:    90                CONTINUE
  517: *
  518:                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  519:                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  520: *
  521:   100             CONTINUE
  522:                END IF
  523:             END IF
  524:          END IF
  525: *
  526: *        Store details of the interchanges in IPIV
  527: *
  528:          IF( KSTEP.EQ.1 ) THEN
  529:             IPIV( K ) = KP
  530:          ELSE
  531:             IPIV( K ) = -KP
  532:             IPIV( K+1 ) = -KP
  533:          END IF
  534: *
  535: *        Increase K and return to the start of the main loop
  536: *
  537:          K = K + KSTEP
  538:          KC = KNC + N - K + 2
  539:          GO TO 60
  540: *
  541:       END IF
  542: *
  543:   110 CONTINUE
  544:       RETURN
  545: *
  546: *     End of DSPTRF
  547: *
  548:       END

CVSweb interface <joel.bertrand@systella.fr>