File:  [local] / rpl / lapack / lapack / dsprfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSPRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSPRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsprfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsprfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsprfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
   22: *                          FERR, BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * ), IWORK( * )
   30: *       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
   31: *      $                   FERR( * ), WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DSPRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is symmetric indefinite
   42: *> and packed, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] NRHS
   63: *> \verbatim
   64: *>          NRHS is INTEGER
   65: *>          The number of right hand sides, i.e., the number of columns
   66: *>          of the matrices B and X.  NRHS >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] AP
   70: *> \verbatim
   71: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   72: *>          The upper or lower triangle of the symmetric matrix A, packed
   73: *>          columnwise in a linear array.  The j-th column of A is stored
   74: *>          in the array AP as follows:
   75: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   76: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] AFP
   80: *> \verbatim
   81: *>          AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   82: *>          The factored form of the matrix A.  AFP contains the block
   83: *>          diagonal matrix D and the multipliers used to obtain the
   84: *>          factor U or L from the factorization A = U*D*U**T or
   85: *>          A = L*D*L**T as computed by DSPTRF, stored as a packed
   86: *>          triangular matrix.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] IPIV
   90: *> \verbatim
   91: *>          IPIV is INTEGER array, dimension (N)
   92: *>          Details of the interchanges and the block structure of D
   93: *>          as determined by DSPTRF.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] B
   97: *> \verbatim
   98: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   99: *>          The right hand side matrix B.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B.  LDB >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[in,out] X
  109: *> \verbatim
  110: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  111: *>          On entry, the solution matrix X, as computed by DSPTRS.
  112: *>          On exit, the improved solution matrix X.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDX
  116: *> \verbatim
  117: *>          LDX is INTEGER
  118: *>          The leading dimension of the array X.  LDX >= max(1,N).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] FERR
  122: *> \verbatim
  123: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  124: *>          The estimated forward error bound for each solution vector
  125: *>          X(j) (the j-th column of the solution matrix X).
  126: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  127: *>          is an estimated upper bound for the magnitude of the largest
  128: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  129: *>          largest element in X(j).  The estimate is as reliable as
  130: *>          the estimate for RCOND, and is almost always a slight
  131: *>          overestimate of the true error.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] BERR
  135: *> \verbatim
  136: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  137: *>          The componentwise relative backward error of each solution
  138: *>          vector X(j) (i.e., the smallest relative change in
  139: *>          any element of A or B that makes X(j) an exact solution).
  140: *> \endverbatim
  141: *>
  142: *> \param[out] WORK
  143: *> \verbatim
  144: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  145: *> \endverbatim
  146: *>
  147: *> \param[out] IWORK
  148: *> \verbatim
  149: *>          IWORK is INTEGER array, dimension (N)
  150: *> \endverbatim
  151: *>
  152: *> \param[out] INFO
  153: *> \verbatim
  154: *>          INFO is INTEGER
  155: *>          = 0:  successful exit
  156: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  157: *> \endverbatim
  158: *
  159: *> \par Internal Parameters:
  160: *  =========================
  161: *>
  162: *> \verbatim
  163: *>  ITMAX is the maximum number of steps of iterative refinement.
  164: *> \endverbatim
  165: *
  166: *  Authors:
  167: *  ========
  168: *
  169: *> \author Univ. of Tennessee
  170: *> \author Univ. of California Berkeley
  171: *> \author Univ. of Colorado Denver
  172: *> \author NAG Ltd.
  173: *
  174: *> \ingroup doubleOTHERcomputational
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE DSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
  178:      $                   FERR, BERR, WORK, IWORK, INFO )
  179: *
  180: *  -- LAPACK computational routine --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *
  184: *     .. Scalar Arguments ..
  185:       CHARACTER          UPLO
  186:       INTEGER            INFO, LDB, LDX, N, NRHS
  187: *     ..
  188: *     .. Array Arguments ..
  189:       INTEGER            IPIV( * ), IWORK( * )
  190:       DOUBLE PRECISION   AFP( * ), AP( * ), B( LDB, * ), BERR( * ),
  191:      $                   FERR( * ), WORK( * ), X( LDX, * )
  192: *     ..
  193: *
  194: *  =====================================================================
  195: *
  196: *     .. Parameters ..
  197:       INTEGER            ITMAX
  198:       PARAMETER          ( ITMAX = 5 )
  199:       DOUBLE PRECISION   ZERO
  200:       PARAMETER          ( ZERO = 0.0D+0 )
  201:       DOUBLE PRECISION   ONE
  202:       PARAMETER          ( ONE = 1.0D+0 )
  203:       DOUBLE PRECISION   TWO
  204:       PARAMETER          ( TWO = 2.0D+0 )
  205:       DOUBLE PRECISION   THREE
  206:       PARAMETER          ( THREE = 3.0D+0 )
  207: *     ..
  208: *     .. Local Scalars ..
  209:       LOGICAL            UPPER
  210:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  211:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  212: *     ..
  213: *     .. Local Arrays ..
  214:       INTEGER            ISAVE( 3 )
  215: *     ..
  216: *     .. External Subroutines ..
  217:       EXTERNAL           DAXPY, DCOPY, DLACN2, DSPMV, DSPTRS, XERBLA
  218: *     ..
  219: *     .. Intrinsic Functions ..
  220:       INTRINSIC          ABS, MAX
  221: *     ..
  222: *     .. External Functions ..
  223:       LOGICAL            LSAME
  224:       DOUBLE PRECISION   DLAMCH
  225:       EXTERNAL           LSAME, DLAMCH
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229: *     Test the input parameters.
  230: *
  231:       INFO = 0
  232:       UPPER = LSAME( UPLO, 'U' )
  233:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  234:          INFO = -1
  235:       ELSE IF( N.LT.0 ) THEN
  236:          INFO = -2
  237:       ELSE IF( NRHS.LT.0 ) THEN
  238:          INFO = -3
  239:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  240:          INFO = -8
  241:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  242:          INFO = -10
  243:       END IF
  244:       IF( INFO.NE.0 ) THEN
  245:          CALL XERBLA( 'DSPRFS', -INFO )
  246:          RETURN
  247:       END IF
  248: *
  249: *     Quick return if possible
  250: *
  251:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  252:          DO 10 J = 1, NRHS
  253:             FERR( J ) = ZERO
  254:             BERR( J ) = ZERO
  255:    10    CONTINUE
  256:          RETURN
  257:       END IF
  258: *
  259: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  260: *
  261:       NZ = N + 1
  262:       EPS = DLAMCH( 'Epsilon' )
  263:       SAFMIN = DLAMCH( 'Safe minimum' )
  264:       SAFE1 = NZ*SAFMIN
  265:       SAFE2 = SAFE1 / EPS
  266: *
  267: *     Do for each right hand side
  268: *
  269:       DO 140 J = 1, NRHS
  270: *
  271:          COUNT = 1
  272:          LSTRES = THREE
  273:    20    CONTINUE
  274: *
  275: *        Loop until stopping criterion is satisfied.
  276: *
  277: *        Compute residual R = B - A * X
  278: *
  279:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  280:          CALL DSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK( N+1 ),
  281:      $               1 )
  282: *
  283: *        Compute componentwise relative backward error from formula
  284: *
  285: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  286: *
  287: *        where abs(Z) is the componentwise absolute value of the matrix
  288: *        or vector Z.  If the i-th component of the denominator is less
  289: *        than SAFE2, then SAFE1 is added to the i-th components of the
  290: *        numerator and denominator before dividing.
  291: *
  292:          DO 30 I = 1, N
  293:             WORK( I ) = ABS( B( I, J ) )
  294:    30    CONTINUE
  295: *
  296: *        Compute abs(A)*abs(X) + abs(B).
  297: *
  298:          KK = 1
  299:          IF( UPPER ) THEN
  300:             DO 50 K = 1, N
  301:                S = ZERO
  302:                XK = ABS( X( K, J ) )
  303:                IK = KK
  304:                DO 40 I = 1, K - 1
  305:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  306:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  307:                   IK = IK + 1
  308:    40          CONTINUE
  309:                WORK( K ) = WORK( K ) + ABS( AP( KK+K-1 ) )*XK + S
  310:                KK = KK + K
  311:    50       CONTINUE
  312:          ELSE
  313:             DO 70 K = 1, N
  314:                S = ZERO
  315:                XK = ABS( X( K, J ) )
  316:                WORK( K ) = WORK( K ) + ABS( AP( KK ) )*XK
  317:                IK = KK + 1
  318:                DO 60 I = K + 1, N
  319:                   WORK( I ) = WORK( I ) + ABS( AP( IK ) )*XK
  320:                   S = S + ABS( AP( IK ) )*ABS( X( I, J ) )
  321:                   IK = IK + 1
  322:    60          CONTINUE
  323:                WORK( K ) = WORK( K ) + S
  324:                KK = KK + ( N-K+1 )
  325:    70       CONTINUE
  326:          END IF
  327:          S = ZERO
  328:          DO 80 I = 1, N
  329:             IF( WORK( I ).GT.SAFE2 ) THEN
  330:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  331:             ELSE
  332:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  333:      $             ( WORK( I )+SAFE1 ) )
  334:             END IF
  335:    80    CONTINUE
  336:          BERR( J ) = S
  337: *
  338: *        Test stopping criterion. Continue iterating if
  339: *           1) The residual BERR(J) is larger than machine epsilon, and
  340: *           2) BERR(J) decreased by at least a factor of 2 during the
  341: *              last iteration, and
  342: *           3) At most ITMAX iterations tried.
  343: *
  344:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  345:      $       COUNT.LE.ITMAX ) THEN
  346: *
  347: *           Update solution and try again.
  348: *
  349:             CALL DSPTRS( UPLO, N, 1, AFP, IPIV, WORK( N+1 ), N, INFO )
  350:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  351:             LSTRES = BERR( J )
  352:             COUNT = COUNT + 1
  353:             GO TO 20
  354:          END IF
  355: *
  356: *        Bound error from formula
  357: *
  358: *        norm(X - XTRUE) / norm(X) .le. FERR =
  359: *        norm( abs(inv(A))*
  360: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  361: *
  362: *        where
  363: *          norm(Z) is the magnitude of the largest component of Z
  364: *          inv(A) is the inverse of A
  365: *          abs(Z) is the componentwise absolute value of the matrix or
  366: *             vector Z
  367: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  368: *          EPS is machine epsilon
  369: *
  370: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  371: *        is incremented by SAFE1 if the i-th component of
  372: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  373: *
  374: *        Use DLACN2 to estimate the infinity-norm of the matrix
  375: *           inv(A) * diag(W),
  376: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  377: *
  378:          DO 90 I = 1, N
  379:             IF( WORK( I ).GT.SAFE2 ) THEN
  380:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  381:             ELSE
  382:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  383:             END IF
  384:    90    CONTINUE
  385: *
  386:          KASE = 0
  387:   100    CONTINUE
  388:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  389:      $                KASE, ISAVE )
  390:          IF( KASE.NE.0 ) THEN
  391:             IF( KASE.EQ.1 ) THEN
  392: *
  393: *              Multiply by diag(W)*inv(A**T).
  394: *
  395:                CALL DSPTRS( UPLO, N, 1, AFP, IPIV, WORK( N+1 ), N,
  396:      $                      INFO )
  397:                DO 110 I = 1, N
  398:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  399:   110          CONTINUE
  400:             ELSE IF( KASE.EQ.2 ) THEN
  401: *
  402: *              Multiply by inv(A)*diag(W).
  403: *
  404:                DO 120 I = 1, N
  405:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  406:   120          CONTINUE
  407:                CALL DSPTRS( UPLO, N, 1, AFP, IPIV, WORK( N+1 ), N,
  408:      $                      INFO )
  409:             END IF
  410:             GO TO 100
  411:          END IF
  412: *
  413: *        Normalize error.
  414: *
  415:          LSTRES = ZERO
  416:          DO 130 I = 1, N
  417:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  418:   130    CONTINUE
  419:          IF( LSTRES.NE.ZERO )
  420:      $      FERR( J ) = FERR( J ) / LSTRES
  421: *
  422:   140 CONTINUE
  423: *
  424:       RETURN
  425: *
  426: *     End of DSPRFS
  427: *
  428:       END

CVSweb interface <joel.bertrand@systella.fr>