File:  [local] / rpl / lapack / lapack / dsposv.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:48:06 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.3.0

    1:       SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
    2:      +                   SWORK, ITER, INFO )
    3: *
    4: *  -- LAPACK PROTOTYPE driver routine (version 3.3.0) --
    5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
    6: *     November 2010
    7: *
    8: *     ..
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          UPLO
   11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
   12: *     ..
   13: *     .. Array Arguments ..
   14:       REAL               SWORK( * )
   15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
   16:      +                   X( LDX, * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DSPOSV computes the solution to a real system of linear equations
   23: *     A * X = B,
   24: *  where A is an N-by-N symmetric positive definite matrix and X and B
   25: *  are N-by-NRHS matrices.
   26: *
   27: *  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
   28: *  and use this factorization within an iterative refinement procedure
   29: *  to produce a solution with DOUBLE PRECISION normwise backward error
   30: *  quality (see below). If the approach fails the method switches to a
   31: *  DOUBLE PRECISION factorization and solve.
   32: *
   33: *  The iterative refinement is not going to be a winning strategy if
   34: *  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
   35: *  performance is too small. A reasonable strategy should take the
   36: *  number of right-hand sides and the size of the matrix into account.
   37: *  This might be done with a call to ILAENV in the future. Up to now, we
   38: *  always try iterative refinement.
   39: *
   40: *  The iterative refinement process is stopped if
   41: *      ITER > ITERMAX
   42: *  or for all the RHS we have:
   43: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
   44: *  where
   45: *      o ITER is the number of the current iteration in the iterative
   46: *        refinement process
   47: *      o RNRM is the infinity-norm of the residual
   48: *      o XNRM is the infinity-norm of the solution
   49: *      o ANRM is the infinity-operator-norm of the matrix A
   50: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
   51: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
   52: *  respectively.
   53: *
   54: *  Arguments
   55: *  =========
   56: *
   57: *  UPLO    (input) CHARACTER*1
   58: *          = 'U':  Upper triangle of A is stored;
   59: *          = 'L':  Lower triangle of A is stored.
   60: *
   61: *  N       (input) INTEGER
   62: *          The number of linear equations, i.e., the order of the
   63: *          matrix A.  N >= 0.
   64: *
   65: *  NRHS    (input) INTEGER
   66: *          The number of right hand sides, i.e., the number of columns
   67: *          of the matrix B.  NRHS >= 0.
   68: *
   69: *  A       (input/output) DOUBLE PRECISION array,
   70: *          dimension (LDA,N)
   71: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
   72: *          N-by-N upper triangular part of A contains the upper
   73: *          triangular part of the matrix A, and the strictly lower
   74: *          triangular part of A is not referenced.  If UPLO = 'L', the
   75: *          leading N-by-N lower triangular part of A contains the lower
   76: *          triangular part of the matrix A, and the strictly upper
   77: *          triangular part of A is not referenced.
   78: *          On exit, if iterative refinement has been successfully used
   79: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
   80: *          unchanged, if double precision factorization has been used
   81: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
   82: *          array A contains the factor U or L from the Cholesky
   83: *          factorization A = U**T*U or A = L*L**T.
   84: *
   85: *
   86: *  LDA     (input) INTEGER
   87: *          The leading dimension of the array A.  LDA >= max(1,N).
   88: *
   89: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   90: *          The N-by-NRHS right hand side matrix B.
   91: *
   92: *  LDB     (input) INTEGER
   93: *          The leading dimension of the array B.  LDB >= max(1,N).
   94: *
   95: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   96: *          If INFO = 0, the N-by-NRHS solution matrix X.
   97: *
   98: *  LDX     (input) INTEGER
   99: *          The leading dimension of the array X.  LDX >= max(1,N).
  100: *
  101: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
  102: *          This array is used to hold the residual vectors.
  103: *
  104: *  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
  105: *          This array is used to use the single precision matrix and the
  106: *          right-hand sides or solutions in single precision.
  107: *
  108: *  ITER    (output) INTEGER
  109: *          < 0: iterative refinement has failed, double precision
  110: *               factorization has been performed
  111: *               -1 : the routine fell back to full precision for
  112: *                    implementation- or machine-specific reasons
  113: *               -2 : narrowing the precision induced an overflow,
  114: *                    the routine fell back to full precision
  115: *               -3 : failure of SPOTRF
  116: *               -31: stop the iterative refinement after the 30th
  117: *                    iterations
  118: *          > 0: iterative refinement has been sucessfully used.
  119: *               Returns the number of iterations
  120: *
  121: *  INFO    (output) INTEGER
  122: *          = 0:  successful exit
  123: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  124: *          > 0:  if INFO = i, the leading minor of order i of (DOUBLE
  125: *                PRECISION) A is not positive definite, so the
  126: *                factorization could not be completed, and the solution
  127: *                has not been computed.
  128: *
  129: *  =========
  130: *
  131: *     .. Parameters ..
  132:       LOGICAL            DOITREF
  133:       PARAMETER          ( DOITREF = .TRUE. )
  134: *
  135:       INTEGER            ITERMAX
  136:       PARAMETER          ( ITERMAX = 30 )
  137: *
  138:       DOUBLE PRECISION   BWDMAX
  139:       PARAMETER          ( BWDMAX = 1.0E+00 )
  140: *
  141:       DOUBLE PRECISION   NEGONE, ONE
  142:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
  143: *
  144: *     .. Local Scalars ..
  145:       INTEGER            I, IITER, PTSA, PTSX
  146:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
  147: *
  148: *     .. External Subroutines ..
  149:       EXTERNAL           DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
  150:      +                   SPOTRF, SPOTRS, XERBLA
  151: *     ..
  152: *     .. External Functions ..
  153:       INTEGER            IDAMAX
  154:       DOUBLE PRECISION   DLAMCH, DLANSY
  155:       LOGICAL            LSAME
  156:       EXTERNAL           IDAMAX, DLAMCH, DLANSY, LSAME
  157: *     ..
  158: *     .. Intrinsic Functions ..
  159:       INTRINSIC          ABS, DBLE, MAX, SQRT
  160: *     ..
  161: *     .. Executable Statements ..
  162: *
  163:       INFO = 0
  164:       ITER = 0
  165: *
  166: *     Test the input parameters.
  167: *
  168:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  169:          INFO = -1
  170:       ELSE IF( N.LT.0 ) THEN
  171:          INFO = -2
  172:       ELSE IF( NRHS.LT.0 ) THEN
  173:          INFO = -3
  174:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  175:          INFO = -5
  176:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  177:          INFO = -7
  178:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  179:          INFO = -9
  180:       END IF
  181:       IF( INFO.NE.0 ) THEN
  182:          CALL XERBLA( 'DSPOSV', -INFO )
  183:          RETURN
  184:       END IF
  185: *
  186: *     Quick return if (N.EQ.0).
  187: *
  188:       IF( N.EQ.0 )
  189:      +   RETURN
  190: *
  191: *     Skip single precision iterative refinement if a priori slower
  192: *     than double precision factorization.
  193: *
  194:       IF( .NOT.DOITREF ) THEN
  195:          ITER = -1
  196:          GO TO 40
  197:       END IF
  198: *
  199: *     Compute some constants.
  200: *
  201:       ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
  202:       EPS = DLAMCH( 'Epsilon' )
  203:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  204: *
  205: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  206: *
  207:       PTSA = 1
  208:       PTSX = PTSA + N*N
  209: *
  210: *     Convert B from double precision to single precision and store the
  211: *     result in SX.
  212: *
  213:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  214: *
  215:       IF( INFO.NE.0 ) THEN
  216:          ITER = -2
  217:          GO TO 40
  218:       END IF
  219: *
  220: *     Convert A from double precision to single precision and store the
  221: *     result in SA.
  222: *
  223:       CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
  224: *
  225:       IF( INFO.NE.0 ) THEN
  226:          ITER = -2
  227:          GO TO 40
  228:       END IF
  229: *
  230: *     Compute the Cholesky factorization of SA.
  231: *
  232:       CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
  233: *
  234:       IF( INFO.NE.0 ) THEN
  235:          ITER = -3
  236:          GO TO 40
  237:       END IF
  238: *
  239: *     Solve the system SA*SX = SB.
  240: *
  241:       CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  242:      +             INFO )
  243: *
  244: *     Convert SX back to double precision
  245: *
  246:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  247: *
  248: *     Compute R = B - AX (R is WORK).
  249: *
  250:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  251: *
  252:       CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  253:      +            WORK, N )
  254: *
  255: *     Check whether the NRHS normwise backward errors satisfy the
  256: *     stopping criterion. If yes, set ITER=0 and return.
  257: *
  258:       DO I = 1, NRHS
  259:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
  260:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
  261:          IF( RNRM.GT.XNRM*CTE )
  262:      +      GO TO 10
  263:       END DO
  264: *
  265: *     If we are here, the NRHS normwise backward errors satisfy the
  266: *     stopping criterion. We are good to exit.
  267: *
  268:       ITER = 0
  269:       RETURN
  270: *
  271:    10 CONTINUE
  272: *
  273:       DO 30 IITER = 1, ITERMAX
  274: *
  275: *        Convert R (in WORK) from double precision to single precision
  276: *        and store the result in SX.
  277: *
  278:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  279: *
  280:          IF( INFO.NE.0 ) THEN
  281:             ITER = -2
  282:             GO TO 40
  283:          END IF
  284: *
  285: *        Solve the system SA*SX = SR.
  286: *
  287:          CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  288:      +                INFO )
  289: *
  290: *        Convert SX back to double precision and update the current
  291: *        iterate.
  292: *
  293:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  294: *
  295:          DO I = 1, NRHS
  296:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  297:          END DO
  298: *
  299: *        Compute R = B - AX (R is WORK).
  300: *
  301:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  302: *
  303:          CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  304:      +               WORK, N )
  305: *
  306: *        Check whether the NRHS normwise backward errors satisfy the
  307: *        stopping criterion. If yes, set ITER=IITER>0 and return.
  308: *
  309:          DO I = 1, NRHS
  310:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
  311:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
  312:             IF( RNRM.GT.XNRM*CTE )
  313:      +         GO TO 20
  314:          END DO
  315: *
  316: *        If we are here, the NRHS normwise backward errors satisfy the
  317: *        stopping criterion, we are good to exit.
  318: *
  319:          ITER = IITER
  320: *
  321:          RETURN
  322: *
  323:    20    CONTINUE
  324: *
  325:    30 CONTINUE
  326: *
  327: *     If we are at this place of the code, this is because we have
  328: *     performed ITER=ITERMAX iterations and never satisified the
  329: *     stopping criterion, set up the ITER flag accordingly and follow
  330: *     up on double precision routine.
  331: *
  332:       ITER = -ITERMAX - 1
  333: *
  334:    40 CONTINUE
  335: *
  336: *     Single-precision iterative refinement failed to converge to a
  337: *     satisfactory solution, so we resort to double precision.
  338: *
  339:       CALL DPOTRF( UPLO, N, A, LDA, INFO )
  340: *
  341:       IF( INFO.NE.0 )
  342:      +   RETURN
  343: *
  344:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  345:       CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
  346: *
  347:       RETURN
  348: *
  349: *     End of DSPOSV.
  350: *
  351:       END

CVSweb interface <joel.bertrand@systella.fr>