Annotation of rpl/lapack/lapack/dsposv.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
                      2:      +                   SWORK, ITER, INFO )
                      3: *
                      4: *  -- LAPACK PROTOTYPE driver routine (version 3.1.2) --
                      5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
                      6: *     May 2007
                      7: *
                      8: *     ..
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          UPLO
                     11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       REAL               SWORK( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     16:      +                   X( LDX, * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  DSPOSV computes the solution to a real system of linear equations
                     23: *     A * X = B,
                     24: *  where A is an N-by-N symmetric positive definite matrix and X and B
                     25: *  are N-by-NRHS matrices.
                     26: *
                     27: *  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
                     28: *  and use this factorization within an iterative refinement procedure
                     29: *  to produce a solution with DOUBLE PRECISION normwise backward error
                     30: *  quality (see below). If the approach fails the method switches to a
                     31: *  DOUBLE PRECISION factorization and solve.
                     32: *
                     33: *  The iterative refinement is not going to be a winning strategy if
                     34: *  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
                     35: *  performance is too small. A reasonable strategy should take the
                     36: *  number of right-hand sides and the size of the matrix into account.
                     37: *  This might be done with a call to ILAENV in the future. Up to now, we
                     38: *  always try iterative refinement.
                     39: *
                     40: *  The iterative refinement process is stopped if
                     41: *      ITER > ITERMAX
                     42: *  or for all the RHS we have:
                     43: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     44: *  where
                     45: *      o ITER is the number of the current iteration in the iterative
                     46: *        refinement process
                     47: *      o RNRM is the infinity-norm of the residual
                     48: *      o XNRM is the infinity-norm of the solution
                     49: *      o ANRM is the infinity-operator-norm of the matrix A
                     50: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     51: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     52: *  respectively.
                     53: *
                     54: *  Arguments
                     55: *  =========
                     56: *
                     57: *  UPLO    (input) CHARACTER
                     58: *          = 'U':  Upper triangle of A is stored;
                     59: *          = 'L':  Lower triangle of A is stored.
                     60: *
                     61: *  N       (input) INTEGER
                     62: *          The number of linear equations, i.e., the order of the
                     63: *          matrix A.  N >= 0.
                     64: *
                     65: *  NRHS    (input) INTEGER
                     66: *          The number of right hand sides, i.e., the number of columns
                     67: *          of the matrix B.  NRHS >= 0.
                     68: *
                     69: *  A       (input/output) DOUBLE PRECISION array,
                     70: *          dimension (LDA,N)
                     71: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                     72: *          N-by-N upper triangular part of A contains the upper
                     73: *          triangular part of the matrix A, and the strictly lower
                     74: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     75: *          leading N-by-N lower triangular part of A contains the lower
                     76: *          triangular part of the matrix A, and the strictly upper
                     77: *          triangular part of A is not referenced.
                     78: *          On exit, if iterative refinement has been successfully used
                     79: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     80: *          unchanged, if double precision factorization has been used
                     81: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     82: *          array A contains the factor U or L from the Cholesky
                     83: *          factorization A = U**T*U or A = L*L**T.
                     84: *
                     85: *
                     86: *  LDA     (input) INTEGER
                     87: *          The leading dimension of the array A.  LDA >= max(1,N).
                     88: *
                     89: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     90: *          The N-by-NRHS right hand side matrix B.
                     91: *
                     92: *  LDB     (input) INTEGER
                     93: *          The leading dimension of the array B.  LDB >= max(1,N).
                     94: *
                     95: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     96: *          If INFO = 0, the N-by-NRHS solution matrix X.
                     97: *
                     98: *  LDX     (input) INTEGER
                     99: *          The leading dimension of the array X.  LDX >= max(1,N).
                    100: *
                    101: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
                    102: *          This array is used to hold the residual vectors.
                    103: *
                    104: *  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
                    105: *          This array is used to use the single precision matrix and the
                    106: *          right-hand sides or solutions in single precision.
                    107: *
                    108: *  ITER    (output) INTEGER
                    109: *          < 0: iterative refinement has failed, double precision
                    110: *               factorization has been performed
                    111: *               -1 : the routine fell back to full precision for
                    112: *                    implementation- or machine-specific reasons
                    113: *               -2 : narrowing the precision induced an overflow,
                    114: *                    the routine fell back to full precision
                    115: *               -3 : failure of SPOTRF
                    116: *               -31: stop the iterative refinement after the 30th
                    117: *                    iterations
                    118: *          > 0: iterative refinement has been sucessfully used.
                    119: *               Returns the number of iterations
                    120: *
                    121: *  INFO    (output) INTEGER
                    122: *          = 0:  successful exit
                    123: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    124: *          > 0:  if INFO = i, the leading minor of order i of (DOUBLE
                    125: *                PRECISION) A is not positive definite, so the
                    126: *                factorization could not be completed, and the solution
                    127: *                has not been computed.
                    128: *
                    129: *  =========
                    130: *
                    131: *     .. Parameters ..
                    132:       LOGICAL            DOITREF
                    133:       PARAMETER          ( DOITREF = .TRUE. )
                    134: *
                    135:       INTEGER            ITERMAX
                    136:       PARAMETER          ( ITERMAX = 30 )
                    137: *
                    138:       DOUBLE PRECISION   BWDMAX
                    139:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    140: *
                    141:       DOUBLE PRECISION   NEGONE, ONE
                    142:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
                    143: *
                    144: *     .. Local Scalars ..
                    145:       INTEGER            I, IITER, PTSA, PTSX
                    146:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    147: *
                    148: *     .. External Subroutines ..
                    149:       EXTERNAL           DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
                    150:      +                   SPOTRF, SPOTRS, XERBLA
                    151: *     ..
                    152: *     .. External Functions ..
                    153:       INTEGER            IDAMAX
                    154:       DOUBLE PRECISION   DLAMCH, DLANSY
                    155:       LOGICAL            LSAME
                    156:       EXTERNAL           IDAMAX, DLAMCH, DLANSY, LSAME
                    157: *     ..
                    158: *     .. Intrinsic Functions ..
                    159:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    160: *     ..
                    161: *     .. Executable Statements ..
                    162: *
                    163:       INFO = 0
                    164:       ITER = 0
                    165: *
                    166: *     Test the input parameters.
                    167: *
                    168:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    169:          INFO = -1
                    170:       ELSE IF( N.LT.0 ) THEN
                    171:          INFO = -2
                    172:       ELSE IF( NRHS.LT.0 ) THEN
                    173:          INFO = -3
                    174:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    175:          INFO = -5
                    176:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    177:          INFO = -7
                    178:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -9
                    180:       END IF
                    181:       IF( INFO.NE.0 ) THEN
                    182:          CALL XERBLA( 'DSPOSV', -INFO )
                    183:          RETURN
                    184:       END IF
                    185: *
                    186: *     Quick return if (N.EQ.0).
                    187: *
                    188:       IF( N.EQ.0 )
                    189:      +   RETURN
                    190: *
                    191: *     Skip single precision iterative refinement if a priori slower
                    192: *     than double precision factorization.
                    193: *
                    194:       IF( .NOT.DOITREF ) THEN
                    195:          ITER = -1
                    196:          GO TO 40
                    197:       END IF
                    198: *
                    199: *     Compute some constants.
                    200: *
                    201:       ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
                    202:       EPS = DLAMCH( 'Epsilon' )
                    203:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    204: *
                    205: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    206: *
                    207:       PTSA = 1
                    208:       PTSX = PTSA + N*N
                    209: *
                    210: *     Convert B from double precision to single precision and store the
                    211: *     result in SX.
                    212: *
                    213:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    214: *
                    215:       IF( INFO.NE.0 ) THEN
                    216:          ITER = -2
                    217:          GO TO 40
                    218:       END IF
                    219: *
                    220: *     Convert A from double precision to single precision and store the
                    221: *     result in SA.
                    222: *
                    223:       CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
                    224: *
                    225:       IF( INFO.NE.0 ) THEN
                    226:          ITER = -2
                    227:          GO TO 40
                    228:       END IF
                    229: *
                    230: *     Compute the Cholesky factorization of SA.
                    231: *
                    232:       CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
                    233: *
                    234:       IF( INFO.NE.0 ) THEN
                    235:          ITER = -3
                    236:          GO TO 40
                    237:       END IF
                    238: *
                    239: *     Solve the system SA*SX = SB.
                    240: *
                    241:       CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
                    242:      +             INFO )
                    243: *
                    244: *     Convert SX back to double precision
                    245: *
                    246:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    247: *
                    248: *     Compute R = B - AX (R is WORK).
                    249: *
                    250:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    251: *
                    252:       CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
                    253:      +            WORK, N )
                    254: *
                    255: *     Check whether the NRHS normwise backward errors satisfy the
                    256: *     stopping criterion. If yes, set ITER=0 and return.
                    257: *
                    258:       DO I = 1, NRHS
                    259:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    260:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    261:          IF( RNRM.GT.XNRM*CTE )
                    262:      +      GO TO 10
                    263:       END DO
                    264: *
                    265: *     If we are here, the NRHS normwise backward errors satisfy the
                    266: *     stopping criterion. We are good to exit.
                    267: *
                    268:       ITER = 0
                    269:       RETURN
                    270: *
                    271:    10 CONTINUE
                    272: *
                    273:       DO 30 IITER = 1, ITERMAX
                    274: *
                    275: *        Convert R (in WORK) from double precision to single precision
                    276: *        and store the result in SX.
                    277: *
                    278:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    279: *
                    280:          IF( INFO.NE.0 ) THEN
                    281:             ITER = -2
                    282:             GO TO 40
                    283:          END IF
                    284: *
                    285: *        Solve the system SA*SX = SR.
                    286: *
                    287:          CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
                    288:      +                INFO )
                    289: *
                    290: *        Convert SX back to double precision and update the current
                    291: *        iterate.
                    292: *
                    293:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    294: *
                    295:          DO I = 1, NRHS
                    296:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    297:          END DO
                    298: *
                    299: *        Compute R = B - AX (R is WORK).
                    300: *
                    301:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    302: *
                    303:          CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
                    304:      +               WORK, N )
                    305: *
                    306: *        Check whether the NRHS normwise backward errors satisfy the
                    307: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    308: *
                    309:          DO I = 1, NRHS
                    310:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    311:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    312:             IF( RNRM.GT.XNRM*CTE )
                    313:      +         GO TO 20
                    314:          END DO
                    315: *
                    316: *        If we are here, the NRHS normwise backward errors satisfy the
                    317: *        stopping criterion, we are good to exit.
                    318: *
                    319:          ITER = IITER
                    320: *
                    321:          RETURN
                    322: *
                    323:    20    CONTINUE
                    324: *
                    325:    30 CONTINUE
                    326: *
                    327: *     If we are at this place of the code, this is because we have
                    328: *     performed ITER=ITERMAX iterations and never satisified the
                    329: *     stopping criterion, set up the ITER flag accordingly and follow
                    330: *     up on double precision routine.
                    331: *
                    332:       ITER = -ITERMAX - 1
                    333: *
                    334:    40 CONTINUE
                    335: *
                    336: *     Single-precision iterative refinement failed to converge to a
                    337: *     satisfactory solution, so we resort to double precision.
                    338: *
                    339:       CALL DPOTRF( UPLO, N, A, LDA, INFO )
                    340: *
                    341:       IF( INFO.NE.0 )
                    342:      +   RETURN
                    343: *
                    344:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    345:       CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
                    346: *
                    347:       RETURN
                    348: *
                    349: *     End of DSPOSV.
                    350: *
                    351:       END

CVSweb interface <joel.bertrand@systella.fr>