Annotation of rpl/lapack/lapack/dsposv.f, revision 1.17

1.8       bertrand    1: *> \brief <b> DSPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DSPOSV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsposv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsposv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsposv.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
                     22: *                          SWORK, ITER, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       REAL               SWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     31: *      $                   X( LDX, * )
                     32: *       ..
1.14      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSPOSV computes the solution to a real system of linear equations
                     41: *>    A * X = B,
                     42: *> where A is an N-by-N symmetric positive definite matrix and X and B
                     43: *> are N-by-NRHS matrices.
                     44: *>
                     45: *> DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
                     46: *> and use this factorization within an iterative refinement procedure
                     47: *> to produce a solution with DOUBLE PRECISION normwise backward error
                     48: *> quality (see below). If the approach fails the method switches to a
                     49: *> DOUBLE PRECISION factorization and solve.
                     50: *>
                     51: *> The iterative refinement is not going to be a winning strategy if
                     52: *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
                     53: *> performance is too small. A reasonable strategy should take the
                     54: *> number of right-hand sides and the size of the matrix into account.
                     55: *> This might be done with a call to ILAENV in the future. Up to now, we
                     56: *> always try iterative refinement.
                     57: *>
                     58: *> The iterative refinement process is stopped if
                     59: *>     ITER > ITERMAX
                     60: *> or for all the RHS we have:
                     61: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     62: *> where
                     63: *>     o ITER is the number of the current iteration in the iterative
                     64: *>       refinement process
                     65: *>     o RNRM is the infinity-norm of the residual
                     66: *>     o XNRM is the infinity-norm of the solution
                     67: *>     o ANRM is the infinity-operator-norm of the matrix A
                     68: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     69: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     70: *> respectively.
                     71: *> \endverbatim
                     72: *
                     73: *  Arguments:
                     74: *  ==========
                     75: *
                     76: *> \param[in] UPLO
                     77: *> \verbatim
                     78: *>          UPLO is CHARACTER*1
                     79: *>          = 'U':  Upper triangle of A is stored;
                     80: *>          = 'L':  Lower triangle of A is stored.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] N
                     84: *> \verbatim
                     85: *>          N is INTEGER
                     86: *>          The number of linear equations, i.e., the order of the
                     87: *>          matrix A.  N >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] NRHS
                     91: *> \verbatim
                     92: *>          NRHS is INTEGER
                     93: *>          The number of right hand sides, i.e., the number of columns
                     94: *>          of the matrix B.  NRHS >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] A
                     98: *> \verbatim
                     99: *>          A is DOUBLE PRECISION array,
                    100: *>          dimension (LDA,N)
                    101: *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
                    102: *>          N-by-N upper triangular part of A contains the upper
                    103: *>          triangular part of the matrix A, and the strictly lower
                    104: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                    105: *>          leading N-by-N lower triangular part of A contains the lower
                    106: *>          triangular part of the matrix A, and the strictly upper
                    107: *>          triangular part of A is not referenced.
                    108: *>          On exit, if iterative refinement has been successfully used
                    109: *>          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                    110: *>          unchanged, if double precision factorization has been used
                    111: *>          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                    112: *>          array A contains the factor U or L from the Cholesky
                    113: *>          factorization A = U**T*U or A = L*L**T.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDA
                    117: *> \verbatim
                    118: *>          LDA is INTEGER
                    119: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] B
                    123: *> \verbatim
                    124: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    125: *>          The N-by-NRHS right hand side matrix B.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDB
                    129: *> \verbatim
                    130: *>          LDB is INTEGER
                    131: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] X
                    135: *> \verbatim
                    136: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    137: *>          If INFO = 0, the N-by-NRHS solution matrix X.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LDX
                    141: *> \verbatim
                    142: *>          LDX is INTEGER
                    143: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] WORK
                    147: *> \verbatim
                    148: *>          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
                    149: *>          This array is used to hold the residual vectors.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] SWORK
                    153: *> \verbatim
                    154: *>          SWORK is REAL array, dimension (N*(N+NRHS))
                    155: *>          This array is used to use the single precision matrix and the
                    156: *>          right-hand sides or solutions in single precision.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[out] ITER
                    160: *> \verbatim
                    161: *>          ITER is INTEGER
                    162: *>          < 0: iterative refinement has failed, double precision
                    163: *>               factorization has been performed
                    164: *>               -1 : the routine fell back to full precision for
                    165: *>                    implementation- or machine-specific reasons
                    166: *>               -2 : narrowing the precision induced an overflow,
                    167: *>                    the routine fell back to full precision
                    168: *>               -3 : failure of SPOTRF
                    169: *>               -31: stop the iterative refinement after the 30th
                    170: *>                    iterations
1.12      bertrand  171: *>          > 0: iterative refinement has been successfully used.
1.8       bertrand  172: *>               Returns the number of iterations
                    173: *> \endverbatim
                    174: *>
                    175: *> \param[out] INFO
                    176: *> \verbatim
                    177: *>          INFO is INTEGER
                    178: *>          = 0:  successful exit
                    179: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    180: *>          > 0:  if INFO = i, the leading minor of order i of (DOUBLE
                    181: *>                PRECISION) A is not positive definite, so the
                    182: *>                factorization could not be completed, and the solution
                    183: *>                has not been computed.
                    184: *> \endverbatim
                    185: *
                    186: *  Authors:
                    187: *  ========
                    188: *
1.14      bertrand  189: *> \author Univ. of Tennessee
                    190: *> \author Univ. of California Berkeley
                    191: *> \author Univ. of Colorado Denver
                    192: *> \author NAG Ltd.
1.8       bertrand  193: *
1.12      bertrand  194: *> \date June 2016
1.8       bertrand  195: *
                    196: *> \ingroup doublePOsolve
                    197: *
                    198: *  =====================================================================
1.1       bertrand  199:       SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
1.6       bertrand  200:      $                   SWORK, ITER, INFO )
1.1       bertrand  201: *
1.16      bertrand  202: *  -- LAPACK driver routine (version 3.8.0) --
1.8       bertrand  203: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    204: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  205: *     June 2016
1.1       bertrand  206: *
                    207: *     .. Scalar Arguments ..
                    208:       CHARACTER          UPLO
                    209:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    210: *     ..
                    211: *     .. Array Arguments ..
                    212:       REAL               SWORK( * )
                    213:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.6       bertrand  214:      $                   X( LDX, * )
1.1       bertrand  215: *     ..
                    216: *
1.6       bertrand  217: *  =====================================================================
1.1       bertrand  218: *
                    219: *     .. Parameters ..
                    220:       LOGICAL            DOITREF
                    221:       PARAMETER          ( DOITREF = .TRUE. )
                    222: *
                    223:       INTEGER            ITERMAX
                    224:       PARAMETER          ( ITERMAX = 30 )
                    225: *
                    226:       DOUBLE PRECISION   BWDMAX
                    227:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    228: *
                    229:       DOUBLE PRECISION   NEGONE, ONE
                    230:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
                    231: *
                    232: *     .. Local Scalars ..
                    233:       INTEGER            I, IITER, PTSA, PTSX
                    234:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    235: *
                    236: *     .. External Subroutines ..
                    237:       EXTERNAL           DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
1.16      bertrand  238:      $                   SPOTRF, SPOTRS, DPOTRF, DPOTRS, XERBLA
1.1       bertrand  239: *     ..
                    240: *     .. External Functions ..
                    241:       INTEGER            IDAMAX
                    242:       DOUBLE PRECISION   DLAMCH, DLANSY
                    243:       LOGICAL            LSAME
                    244:       EXTERNAL           IDAMAX, DLAMCH, DLANSY, LSAME
                    245: *     ..
                    246: *     .. Intrinsic Functions ..
                    247:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    248: *     ..
                    249: *     .. Executable Statements ..
                    250: *
                    251:       INFO = 0
                    252:       ITER = 0
                    253: *
                    254: *     Test the input parameters.
                    255: *
                    256:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    257:          INFO = -1
                    258:       ELSE IF( N.LT.0 ) THEN
                    259:          INFO = -2
                    260:       ELSE IF( NRHS.LT.0 ) THEN
                    261:          INFO = -3
                    262:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    263:          INFO = -5
                    264:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    265:          INFO = -7
                    266:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    267:          INFO = -9
                    268:       END IF
                    269:       IF( INFO.NE.0 ) THEN
                    270:          CALL XERBLA( 'DSPOSV', -INFO )
                    271:          RETURN
                    272:       END IF
                    273: *
                    274: *     Quick return if (N.EQ.0).
                    275: *
                    276:       IF( N.EQ.0 )
1.6       bertrand  277:      $   RETURN
1.1       bertrand  278: *
                    279: *     Skip single precision iterative refinement if a priori slower
                    280: *     than double precision factorization.
                    281: *
                    282:       IF( .NOT.DOITREF ) THEN
                    283:          ITER = -1
                    284:          GO TO 40
                    285:       END IF
                    286: *
                    287: *     Compute some constants.
                    288: *
                    289:       ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
                    290:       EPS = DLAMCH( 'Epsilon' )
                    291:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    292: *
                    293: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    294: *
                    295:       PTSA = 1
                    296:       PTSX = PTSA + N*N
                    297: *
                    298: *     Convert B from double precision to single precision and store the
                    299: *     result in SX.
                    300: *
                    301:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    302: *
                    303:       IF( INFO.NE.0 ) THEN
                    304:          ITER = -2
                    305:          GO TO 40
                    306:       END IF
                    307: *
                    308: *     Convert A from double precision to single precision and store the
                    309: *     result in SA.
                    310: *
                    311:       CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
                    312: *
                    313:       IF( INFO.NE.0 ) THEN
                    314:          ITER = -2
                    315:          GO TO 40
                    316:       END IF
                    317: *
                    318: *     Compute the Cholesky factorization of SA.
                    319: *
                    320:       CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
                    321: *
                    322:       IF( INFO.NE.0 ) THEN
                    323:          ITER = -3
                    324:          GO TO 40
                    325:       END IF
                    326: *
                    327: *     Solve the system SA*SX = SB.
                    328: *
                    329:       CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
1.6       bertrand  330:      $             INFO )
1.1       bertrand  331: *
                    332: *     Convert SX back to double precision
                    333: *
                    334:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    335: *
                    336: *     Compute R = B - AX (R is WORK).
                    337: *
                    338:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    339: *
                    340:       CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
1.6       bertrand  341:      $            WORK, N )
1.1       bertrand  342: *
                    343: *     Check whether the NRHS normwise backward errors satisfy the
                    344: *     stopping criterion. If yes, set ITER=0 and return.
                    345: *
                    346:       DO I = 1, NRHS
                    347:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    348:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    349:          IF( RNRM.GT.XNRM*CTE )
1.6       bertrand  350:      $      GO TO 10
1.1       bertrand  351:       END DO
                    352: *
                    353: *     If we are here, the NRHS normwise backward errors satisfy the
                    354: *     stopping criterion. We are good to exit.
                    355: *
                    356:       ITER = 0
                    357:       RETURN
                    358: *
                    359:    10 CONTINUE
                    360: *
                    361:       DO 30 IITER = 1, ITERMAX
                    362: *
                    363: *        Convert R (in WORK) from double precision to single precision
                    364: *        and store the result in SX.
                    365: *
                    366:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    367: *
                    368:          IF( INFO.NE.0 ) THEN
                    369:             ITER = -2
                    370:             GO TO 40
                    371:          END IF
                    372: *
                    373: *        Solve the system SA*SX = SR.
                    374: *
                    375:          CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
1.6       bertrand  376:      $                INFO )
1.1       bertrand  377: *
                    378: *        Convert SX back to double precision and update the current
                    379: *        iterate.
                    380: *
                    381:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    382: *
                    383:          DO I = 1, NRHS
                    384:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    385:          END DO
                    386: *
                    387: *        Compute R = B - AX (R is WORK).
                    388: *
                    389:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    390: *
                    391:          CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
1.6       bertrand  392:      $               WORK, N )
1.1       bertrand  393: *
                    394: *        Check whether the NRHS normwise backward errors satisfy the
                    395: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    396: *
                    397:          DO I = 1, NRHS
                    398:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    399:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    400:             IF( RNRM.GT.XNRM*CTE )
1.6       bertrand  401:      $         GO TO 20
1.1       bertrand  402:          END DO
                    403: *
                    404: *        If we are here, the NRHS normwise backward errors satisfy the
                    405: *        stopping criterion, we are good to exit.
                    406: *
                    407:          ITER = IITER
                    408: *
                    409:          RETURN
                    410: *
                    411:    20    CONTINUE
                    412: *
                    413:    30 CONTINUE
                    414: *
                    415: *     If we are at this place of the code, this is because we have
                    416: *     performed ITER=ITERMAX iterations and never satisified the
                    417: *     stopping criterion, set up the ITER flag accordingly and follow
                    418: *     up on double precision routine.
                    419: *
                    420:       ITER = -ITERMAX - 1
                    421: *
                    422:    40 CONTINUE
                    423: *
                    424: *     Single-precision iterative refinement failed to converge to a
                    425: *     satisfactory solution, so we resort to double precision.
                    426: *
                    427:       CALL DPOTRF( UPLO, N, A, LDA, INFO )
                    428: *
                    429:       IF( INFO.NE.0 )
1.6       bertrand  430:      $   RETURN
1.1       bertrand  431: *
                    432:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    433:       CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
                    434: *
                    435:       RETURN
                    436: *
                    437: *     End of DSPOSV.
                    438: *
                    439:       END

CVSweb interface <joel.bertrand@systella.fr>