Annotation of rpl/lapack/lapack/dsposv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
        !             2:      +                   SWORK, ITER, INFO )
        !             3: *
        !             4: *  -- LAPACK PROTOTYPE driver routine (version 3.1.2) --
        !             5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
        !             6: *     May 2007
        !             7: *
        !             8: *     ..
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          UPLO
        !            11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       REAL               SWORK( * )
        !            15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
        !            16:      +                   X( LDX, * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  DSPOSV computes the solution to a real system of linear equations
        !            23: *     A * X = B,
        !            24: *  where A is an N-by-N symmetric positive definite matrix and X and B
        !            25: *  are N-by-NRHS matrices.
        !            26: *
        !            27: *  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
        !            28: *  and use this factorization within an iterative refinement procedure
        !            29: *  to produce a solution with DOUBLE PRECISION normwise backward error
        !            30: *  quality (see below). If the approach fails the method switches to a
        !            31: *  DOUBLE PRECISION factorization and solve.
        !            32: *
        !            33: *  The iterative refinement is not going to be a winning strategy if
        !            34: *  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
        !            35: *  performance is too small. A reasonable strategy should take the
        !            36: *  number of right-hand sides and the size of the matrix into account.
        !            37: *  This might be done with a call to ILAENV in the future. Up to now, we
        !            38: *  always try iterative refinement.
        !            39: *
        !            40: *  The iterative refinement process is stopped if
        !            41: *      ITER > ITERMAX
        !            42: *  or for all the RHS we have:
        !            43: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
        !            44: *  where
        !            45: *      o ITER is the number of the current iteration in the iterative
        !            46: *        refinement process
        !            47: *      o RNRM is the infinity-norm of the residual
        !            48: *      o XNRM is the infinity-norm of the solution
        !            49: *      o ANRM is the infinity-operator-norm of the matrix A
        !            50: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
        !            51: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
        !            52: *  respectively.
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  UPLO    (input) CHARACTER
        !            58: *          = 'U':  Upper triangle of A is stored;
        !            59: *          = 'L':  Lower triangle of A is stored.
        !            60: *
        !            61: *  N       (input) INTEGER
        !            62: *          The number of linear equations, i.e., the order of the
        !            63: *          matrix A.  N >= 0.
        !            64: *
        !            65: *  NRHS    (input) INTEGER
        !            66: *          The number of right hand sides, i.e., the number of columns
        !            67: *          of the matrix B.  NRHS >= 0.
        !            68: *
        !            69: *  A       (input/output) DOUBLE PRECISION array,
        !            70: *          dimension (LDA,N)
        !            71: *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
        !            72: *          N-by-N upper triangular part of A contains the upper
        !            73: *          triangular part of the matrix A, and the strictly lower
        !            74: *          triangular part of A is not referenced.  If UPLO = 'L', the
        !            75: *          leading N-by-N lower triangular part of A contains the lower
        !            76: *          triangular part of the matrix A, and the strictly upper
        !            77: *          triangular part of A is not referenced.
        !            78: *          On exit, if iterative refinement has been successfully used
        !            79: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
        !            80: *          unchanged, if double precision factorization has been used
        !            81: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
        !            82: *          array A contains the factor U or L from the Cholesky
        !            83: *          factorization A = U**T*U or A = L*L**T.
        !            84: *
        !            85: *
        !            86: *  LDA     (input) INTEGER
        !            87: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            88: *
        !            89: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            90: *          The N-by-NRHS right hand side matrix B.
        !            91: *
        !            92: *  LDB     (input) INTEGER
        !            93: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            94: *
        !            95: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !            96: *          If INFO = 0, the N-by-NRHS solution matrix X.
        !            97: *
        !            98: *  LDX     (input) INTEGER
        !            99: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           100: *
        !           101: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
        !           102: *          This array is used to hold the residual vectors.
        !           103: *
        !           104: *  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
        !           105: *          This array is used to use the single precision matrix and the
        !           106: *          right-hand sides or solutions in single precision.
        !           107: *
        !           108: *  ITER    (output) INTEGER
        !           109: *          < 0: iterative refinement has failed, double precision
        !           110: *               factorization has been performed
        !           111: *               -1 : the routine fell back to full precision for
        !           112: *                    implementation- or machine-specific reasons
        !           113: *               -2 : narrowing the precision induced an overflow,
        !           114: *                    the routine fell back to full precision
        !           115: *               -3 : failure of SPOTRF
        !           116: *               -31: stop the iterative refinement after the 30th
        !           117: *                    iterations
        !           118: *          > 0: iterative refinement has been sucessfully used.
        !           119: *               Returns the number of iterations
        !           120: *
        !           121: *  INFO    (output) INTEGER
        !           122: *          = 0:  successful exit
        !           123: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           124: *          > 0:  if INFO = i, the leading minor of order i of (DOUBLE
        !           125: *                PRECISION) A is not positive definite, so the
        !           126: *                factorization could not be completed, and the solution
        !           127: *                has not been computed.
        !           128: *
        !           129: *  =========
        !           130: *
        !           131: *     .. Parameters ..
        !           132:       LOGICAL            DOITREF
        !           133:       PARAMETER          ( DOITREF = .TRUE. )
        !           134: *
        !           135:       INTEGER            ITERMAX
        !           136:       PARAMETER          ( ITERMAX = 30 )
        !           137: *
        !           138:       DOUBLE PRECISION   BWDMAX
        !           139:       PARAMETER          ( BWDMAX = 1.0E+00 )
        !           140: *
        !           141:       DOUBLE PRECISION   NEGONE, ONE
        !           142:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
        !           143: *
        !           144: *     .. Local Scalars ..
        !           145:       INTEGER            I, IITER, PTSA, PTSX
        !           146:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
        !           147: *
        !           148: *     .. External Subroutines ..
        !           149:       EXTERNAL           DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
        !           150:      +                   SPOTRF, SPOTRS, XERBLA
        !           151: *     ..
        !           152: *     .. External Functions ..
        !           153:       INTEGER            IDAMAX
        !           154:       DOUBLE PRECISION   DLAMCH, DLANSY
        !           155:       LOGICAL            LSAME
        !           156:       EXTERNAL           IDAMAX, DLAMCH, DLANSY, LSAME
        !           157: *     ..
        !           158: *     .. Intrinsic Functions ..
        !           159:       INTRINSIC          ABS, DBLE, MAX, SQRT
        !           160: *     ..
        !           161: *     .. Executable Statements ..
        !           162: *
        !           163:       INFO = 0
        !           164:       ITER = 0
        !           165: *
        !           166: *     Test the input parameters.
        !           167: *
        !           168:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
        !           169:          INFO = -1
        !           170:       ELSE IF( N.LT.0 ) THEN
        !           171:          INFO = -2
        !           172:       ELSE IF( NRHS.LT.0 ) THEN
        !           173:          INFO = -3
        !           174:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           175:          INFO = -5
        !           176:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           177:          INFO = -7
        !           178:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           179:          INFO = -9
        !           180:       END IF
        !           181:       IF( INFO.NE.0 ) THEN
        !           182:          CALL XERBLA( 'DSPOSV', -INFO )
        !           183:          RETURN
        !           184:       END IF
        !           185: *
        !           186: *     Quick return if (N.EQ.0).
        !           187: *
        !           188:       IF( N.EQ.0 )
        !           189:      +   RETURN
        !           190: *
        !           191: *     Skip single precision iterative refinement if a priori slower
        !           192: *     than double precision factorization.
        !           193: *
        !           194:       IF( .NOT.DOITREF ) THEN
        !           195:          ITER = -1
        !           196:          GO TO 40
        !           197:       END IF
        !           198: *
        !           199: *     Compute some constants.
        !           200: *
        !           201:       ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
        !           202:       EPS = DLAMCH( 'Epsilon' )
        !           203:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
        !           204: *
        !           205: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
        !           206: *
        !           207:       PTSA = 1
        !           208:       PTSX = PTSA + N*N
        !           209: *
        !           210: *     Convert B from double precision to single precision and store the
        !           211: *     result in SX.
        !           212: *
        !           213:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
        !           214: *
        !           215:       IF( INFO.NE.0 ) THEN
        !           216:          ITER = -2
        !           217:          GO TO 40
        !           218:       END IF
        !           219: *
        !           220: *     Convert A from double precision to single precision and store the
        !           221: *     result in SA.
        !           222: *
        !           223:       CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
        !           224: *
        !           225:       IF( INFO.NE.0 ) THEN
        !           226:          ITER = -2
        !           227:          GO TO 40
        !           228:       END IF
        !           229: *
        !           230: *     Compute the Cholesky factorization of SA.
        !           231: *
        !           232:       CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
        !           233: *
        !           234:       IF( INFO.NE.0 ) THEN
        !           235:          ITER = -3
        !           236:          GO TO 40
        !           237:       END IF
        !           238: *
        !           239: *     Solve the system SA*SX = SB.
        !           240: *
        !           241:       CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
        !           242:      +             INFO )
        !           243: *
        !           244: *     Convert SX back to double precision
        !           245: *
        !           246:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
        !           247: *
        !           248: *     Compute R = B - AX (R is WORK).
        !           249: *
        !           250:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           251: *
        !           252:       CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
        !           253:      +            WORK, N )
        !           254: *
        !           255: *     Check whether the NRHS normwise backward errors satisfy the
        !           256: *     stopping criterion. If yes, set ITER=0 and return.
        !           257: *
        !           258:       DO I = 1, NRHS
        !           259:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
        !           260:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           261:          IF( RNRM.GT.XNRM*CTE )
        !           262:      +      GO TO 10
        !           263:       END DO
        !           264: *
        !           265: *     If we are here, the NRHS normwise backward errors satisfy the
        !           266: *     stopping criterion. We are good to exit.
        !           267: *
        !           268:       ITER = 0
        !           269:       RETURN
        !           270: *
        !           271:    10 CONTINUE
        !           272: *
        !           273:       DO 30 IITER = 1, ITERMAX
        !           274: *
        !           275: *        Convert R (in WORK) from double precision to single precision
        !           276: *        and store the result in SX.
        !           277: *
        !           278:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
        !           279: *
        !           280:          IF( INFO.NE.0 ) THEN
        !           281:             ITER = -2
        !           282:             GO TO 40
        !           283:          END IF
        !           284: *
        !           285: *        Solve the system SA*SX = SR.
        !           286: *
        !           287:          CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
        !           288:      +                INFO )
        !           289: *
        !           290: *        Convert SX back to double precision and update the current
        !           291: *        iterate.
        !           292: *
        !           293:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
        !           294: *
        !           295:          DO I = 1, NRHS
        !           296:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
        !           297:          END DO
        !           298: *
        !           299: *        Compute R = B - AX (R is WORK).
        !           300: *
        !           301:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           302: *
        !           303:          CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
        !           304:      +               WORK, N )
        !           305: *
        !           306: *        Check whether the NRHS normwise backward errors satisfy the
        !           307: *        stopping criterion. If yes, set ITER=IITER>0 and return.
        !           308: *
        !           309:          DO I = 1, NRHS
        !           310:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
        !           311:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           312:             IF( RNRM.GT.XNRM*CTE )
        !           313:      +         GO TO 20
        !           314:          END DO
        !           315: *
        !           316: *        If we are here, the NRHS normwise backward errors satisfy the
        !           317: *        stopping criterion, we are good to exit.
        !           318: *
        !           319:          ITER = IITER
        !           320: *
        !           321:          RETURN
        !           322: *
        !           323:    20    CONTINUE
        !           324: *
        !           325:    30 CONTINUE
        !           326: *
        !           327: *     If we are at this place of the code, this is because we have
        !           328: *     performed ITER=ITERMAX iterations and never satisified the
        !           329: *     stopping criterion, set up the ITER flag accordingly and follow
        !           330: *     up on double precision routine.
        !           331: *
        !           332:       ITER = -ITERMAX - 1
        !           333: *
        !           334:    40 CONTINUE
        !           335: *
        !           336: *     Single-precision iterative refinement failed to converge to a
        !           337: *     satisfactory solution, so we resort to double precision.
        !           338: *
        !           339:       CALL DPOTRF( UPLO, N, A, LDA, INFO )
        !           340: *
        !           341:       IF( INFO.NE.0 )
        !           342:      +   RETURN
        !           343: *
        !           344:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
        !           345:       CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
        !           346: *
        !           347:       RETURN
        !           348: *
        !           349: *     End of DSPOSV.
        !           350: *
        !           351:       END

CVSweb interface <joel.bertrand@systella.fr>