File:  [local] / rpl / lapack / lapack / dspgvx.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:34 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
    2:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
    3:      $                   IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
   18:      $                   Z( LDZ, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DSPGVX computes selected eigenvalues, and optionally, eigenvectors
   25: *  of a real generalized symmetric-definite eigenproblem, of the form
   26: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
   27: *  and B are assumed to be symmetric, stored in packed storage, and B
   28: *  is also positive definite.  Eigenvalues and eigenvectors can be
   29: *  selected by specifying either a range of values or a range of indices
   30: *  for the desired eigenvalues.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  ITYPE   (input) INTEGER
   36: *          Specifies the problem type to be solved:
   37: *          = 1:  A*x = (lambda)*B*x
   38: *          = 2:  A*B*x = (lambda)*x
   39: *          = 3:  B*A*x = (lambda)*x
   40: *
   41: *  JOBZ    (input) CHARACTER*1
   42: *          = 'N':  Compute eigenvalues only;
   43: *          = 'V':  Compute eigenvalues and eigenvectors.
   44: *
   45: *  RANGE   (input) CHARACTER*1
   46: *          = 'A': all eigenvalues will be found.
   47: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   48: *                 will be found.
   49: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   50: *
   51: *  UPLO    (input) CHARACTER*1
   52: *          = 'U':  Upper triangle of A and B are stored;
   53: *          = 'L':  Lower triangle of A and B are stored.
   54: *
   55: *  N       (input) INTEGER
   56: *          The order of the matrix pencil (A,B).  N >= 0.
   57: *
   58: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   59: *          On entry, the upper or lower triangle of the symmetric matrix
   60: *          A, packed columnwise in a linear array.  The j-th column of A
   61: *          is stored in the array AP as follows:
   62: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   63: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   64: *
   65: *          On exit, the contents of AP are destroyed.
   66: *
   67: *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   68: *          On entry, the upper or lower triangle of the symmetric matrix
   69: *          B, packed columnwise in a linear array.  The j-th column of B
   70: *          is stored in the array BP as follows:
   71: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
   72: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
   73: *
   74: *          On exit, the triangular factor U or L from the Cholesky
   75: *          factorization B = U**T*U or B = L*L**T, in the same storage
   76: *          format as B.
   77: *
   78: *  VL      (input) DOUBLE PRECISION
   79: *  VU      (input) DOUBLE PRECISION
   80: *          If RANGE='V', the lower and upper bounds of the interval to
   81: *          be searched for eigenvalues. VL < VU.
   82: *          Not referenced if RANGE = 'A' or 'I'.
   83: *
   84: *  IL      (input) INTEGER
   85: *  IU      (input) INTEGER
   86: *          If RANGE='I', the indices (in ascending order) of the
   87: *          smallest and largest eigenvalues to be returned.
   88: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   89: *          Not referenced if RANGE = 'A' or 'V'.
   90: *
   91: *  ABSTOL  (input) DOUBLE PRECISION
   92: *          The absolute error tolerance for the eigenvalues.
   93: *          An approximate eigenvalue is accepted as converged
   94: *          when it is determined to lie in an interval [a,b]
   95: *          of width less than or equal to
   96: *
   97: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   98: *
   99: *          where EPS is the machine precision.  If ABSTOL is less than
  100: *          or equal to zero, then  EPS*|T|  will be used in its place,
  101: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  102: *          by reducing A to tridiagonal form.
  103: *
  104: *          Eigenvalues will be computed most accurately when ABSTOL is
  105: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  106: *          If this routine returns with INFO>0, indicating that some
  107: *          eigenvectors did not converge, try setting ABSTOL to
  108: *          2*DLAMCH('S').
  109: *
  110: *  M       (output) INTEGER
  111: *          The total number of eigenvalues found.  0 <= M <= N.
  112: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  113: *
  114: *  W       (output) DOUBLE PRECISION array, dimension (N)
  115: *          On normal exit, the first M elements contain the selected
  116: *          eigenvalues in ascending order.
  117: *
  118: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  119: *          If JOBZ = 'N', then Z is not referenced.
  120: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  121: *          contain the orthonormal eigenvectors of the matrix A
  122: *          corresponding to the selected eigenvalues, with the i-th
  123: *          column of Z holding the eigenvector associated with W(i).
  124: *          The eigenvectors are normalized as follows:
  125: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
  126: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
  127: *
  128: *          If an eigenvector fails to converge, then that column of Z
  129: *          contains the latest approximation to the eigenvector, and the
  130: *          index of the eigenvector is returned in IFAIL.
  131: *          Note: the user must ensure that at least max(1,M) columns are
  132: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  133: *          is not known in advance and an upper bound must be used.
  134: *
  135: *  LDZ     (input) INTEGER
  136: *          The leading dimension of the array Z.  LDZ >= 1, and if
  137: *          JOBZ = 'V', LDZ >= max(1,N).
  138: *
  139: *  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N)
  140: *
  141: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  142: *
  143: *  IFAIL   (output) INTEGER array, dimension (N)
  144: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  145: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  146: *          indices of the eigenvectors that failed to converge.
  147: *          If JOBZ = 'N', then IFAIL is not referenced.
  148: *
  149: *  INFO    (output) INTEGER
  150: *          = 0:  successful exit
  151: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  152: *          > 0:  DPPTRF or DSPEVX returned an error code:
  153: *             <= N:  if INFO = i, DSPEVX failed to converge;
  154: *                    i eigenvectors failed to converge.  Their indices
  155: *                    are stored in array IFAIL.
  156: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  157: *                    minor of order i of B is not positive definite.
  158: *                    The factorization of B could not be completed and
  159: *                    no eigenvalues or eigenvectors were computed.
  160: *
  161: *  Further Details
  162: *  ===============
  163: *
  164: *  Based on contributions by
  165: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  166: *
  167: * =====================================================================
  168: *
  169: *     .. Local Scalars ..
  170:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
  171:       CHARACTER          TRANS
  172:       INTEGER            J
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL            LSAME
  176:       EXTERNAL           LSAME
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           DPPTRF, DSPEVX, DSPGST, DTPMV, DTPSV, XERBLA
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          MIN
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input parameters.
  187: *
  188:       UPPER = LSAME( UPLO, 'U' )
  189:       WANTZ = LSAME( JOBZ, 'V' )
  190:       ALLEIG = LSAME( RANGE, 'A' )
  191:       VALEIG = LSAME( RANGE, 'V' )
  192:       INDEIG = LSAME( RANGE, 'I' )
  193: *
  194:       INFO = 0
  195:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  196:          INFO = -1
  197:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  198:          INFO = -2
  199:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  200:          INFO = -3
  201:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  202:          INFO = -4
  203:       ELSE IF( N.LT.0 ) THEN
  204:          INFO = -5
  205:       ELSE
  206:          IF( VALEIG ) THEN
  207:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
  208:                INFO = -9
  209:             END IF
  210:          ELSE IF( INDEIG ) THEN
  211:             IF( IL.LT.1 ) THEN
  212:                INFO = -10
  213:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  214:                INFO = -11
  215:             END IF
  216:          END IF
  217:       END IF
  218:       IF( INFO.EQ.0 ) THEN
  219:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  220:             INFO = -16
  221:          END IF
  222:       END IF
  223: *
  224:       IF( INFO.NE.0 ) THEN
  225:          CALL XERBLA( 'DSPGVX', -INFO )
  226:          RETURN
  227:       END IF
  228: *
  229: *     Quick return if possible
  230: *
  231:       M = 0
  232:       IF( N.EQ.0 )
  233:      $   RETURN
  234: *
  235: *     Form a Cholesky factorization of B.
  236: *
  237:       CALL DPPTRF( UPLO, N, BP, INFO )
  238:       IF( INFO.NE.0 ) THEN
  239:          INFO = N + INFO
  240:          RETURN
  241:       END IF
  242: *
  243: *     Transform problem to standard eigenvalue problem and solve.
  244: *
  245:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  246:       CALL DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
  247:      $             W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
  248: *
  249:       IF( WANTZ ) THEN
  250: *
  251: *        Backtransform eigenvectors to the original problem.
  252: *
  253:          IF( INFO.GT.0 )
  254:      $      M = INFO - 1
  255:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  256: *
  257: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  258: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
  259: *
  260:             IF( UPPER ) THEN
  261:                TRANS = 'N'
  262:             ELSE
  263:                TRANS = 'T'
  264:             END IF
  265: *
  266:             DO 10 J = 1, M
  267:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  268:      $                     1 )
  269:    10       CONTINUE
  270: *
  271:          ELSE IF( ITYPE.EQ.3 ) THEN
  272: *
  273: *           For B*A*x=(lambda)*x;
  274: *           backtransform eigenvectors: x = L*y or U'*y
  275: *
  276:             IF( UPPER ) THEN
  277:                TRANS = 'T'
  278:             ELSE
  279:                TRANS = 'N'
  280:             END IF
  281: *
  282:             DO 20 J = 1, M
  283:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  284:      $                     1 )
  285:    20       CONTINUE
  286:          END IF
  287:       END IF
  288: *
  289:       RETURN
  290: *
  291: *     End of DSPGVX
  292: *
  293:       END

CVSweb interface <joel.bertrand@systella.fr>