File:  [local] / rpl / lapack / lapack / dspgvx.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSPGVX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSPGVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
   22: *                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
   23: *                          IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
   33: *      $                   Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DSPGVX computes selected eigenvalues, and optionally, eigenvectors
   43: *> of a real generalized symmetric-definite eigenproblem, of the form
   44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
   45: *> and B are assumed to be symmetric, stored in packed storage, and B
   46: *> is also positive definite.  Eigenvalues and eigenvectors can be
   47: *> selected by specifying either a range of values or a range of indices
   48: *> for the desired eigenvalues.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] ITYPE
   55: *> \verbatim
   56: *>          ITYPE is INTEGER
   57: *>          Specifies the problem type to be solved:
   58: *>          = 1:  A*x = (lambda)*B*x
   59: *>          = 2:  A*B*x = (lambda)*x
   60: *>          = 3:  B*A*x = (lambda)*x
   61: *> \endverbatim
   62: *>
   63: *> \param[in] JOBZ
   64: *> \verbatim
   65: *>          JOBZ is CHARACTER*1
   66: *>          = 'N':  Compute eigenvalues only;
   67: *>          = 'V':  Compute eigenvalues and eigenvectors.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] RANGE
   71: *> \verbatim
   72: *>          RANGE is CHARACTER*1
   73: *>          = 'A': all eigenvalues will be found.
   74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   75: *>                 will be found.
   76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] UPLO
   80: *> \verbatim
   81: *>          UPLO is CHARACTER*1
   82: *>          = 'U':  Upper triangle of A and B are stored;
   83: *>          = 'L':  Lower triangle of A and B are stored.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The order of the matrix pencil (A,B).  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] AP
   93: *> \verbatim
   94: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   95: *>          On entry, the upper or lower triangle of the symmetric matrix
   96: *>          A, packed columnwise in a linear array.  The j-th column of A
   97: *>          is stored in the array AP as follows:
   98: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   99: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
  100: *>
  101: *>          On exit, the contents of AP are destroyed.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] BP
  105: *> \verbatim
  106: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  107: *>          On entry, the upper or lower triangle of the symmetric matrix
  108: *>          B, packed columnwise in a linear array.  The j-th column of B
  109: *>          is stored in the array BP as follows:
  110: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
  111: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
  112: *>
  113: *>          On exit, the triangular factor U or L from the Cholesky
  114: *>          factorization B = U**T*U or B = L*L**T, in the same storage
  115: *>          format as B.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] VL
  119: *> \verbatim
  120: *>          VL is DOUBLE PRECISION
  121: *>
  122: *>          If RANGE='V', the lower bound of the interval to
  123: *>          be searched for eigenvalues. VL < VU.
  124: *>          Not referenced if RANGE = 'A' or 'I'.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] VU
  128: *> \verbatim
  129: *>          VU is DOUBLE PRECISION
  130: *>
  131: *>          If RANGE='V', the upper bound of the interval to
  132: *>          be searched for eigenvalues. VL < VU.
  133: *>          Not referenced if RANGE = 'A' or 'I'.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IL
  137: *> \verbatim
  138: *>          IL is INTEGER
  139: *>
  140: *>          If RANGE='I', the index of the
  141: *>          smallest eigenvalue to be returned.
  142: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  143: *>          Not referenced if RANGE = 'A' or 'V'.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] IU
  147: *> \verbatim
  148: *>          IU is INTEGER
  149: *>
  150: *>          If RANGE='I', the index of the
  151: *>          largest eigenvalue to be returned.
  152: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  153: *>          Not referenced if RANGE = 'A' or 'V'.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] ABSTOL
  157: *> \verbatim
  158: *>          ABSTOL is DOUBLE PRECISION
  159: *>          The absolute error tolerance for the eigenvalues.
  160: *>          An approximate eigenvalue is accepted as converged
  161: *>          when it is determined to lie in an interval [a,b]
  162: *>          of width less than or equal to
  163: *>
  164: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  165: *>
  166: *>          where EPS is the machine precision.  If ABSTOL is less than
  167: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  168: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  169: *>          by reducing A to tridiagonal form.
  170: *>
  171: *>          Eigenvalues will be computed most accurately when ABSTOL is
  172: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  173: *>          If this routine returns with INFO>0, indicating that some
  174: *>          eigenvectors did not converge, try setting ABSTOL to
  175: *>          2*DLAMCH('S').
  176: *> \endverbatim
  177: *>
  178: *> \param[out] M
  179: *> \verbatim
  180: *>          M is INTEGER
  181: *>          The total number of eigenvalues found.  0 <= M <= N.
  182: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  183: *> \endverbatim
  184: *>
  185: *> \param[out] W
  186: *> \verbatim
  187: *>          W is DOUBLE PRECISION array, dimension (N)
  188: *>          On normal exit, the first M elements contain the selected
  189: *>          eigenvalues in ascending order.
  190: *> \endverbatim
  191: *>
  192: *> \param[out] Z
  193: *> \verbatim
  194: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  195: *>          If JOBZ = 'N', then Z is not referenced.
  196: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  197: *>          contain the orthonormal eigenvectors of the matrix A
  198: *>          corresponding to the selected eigenvalues, with the i-th
  199: *>          column of Z holding the eigenvector associated with W(i).
  200: *>          The eigenvectors are normalized as follows:
  201: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
  202: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
  203: *>
  204: *>          If an eigenvector fails to converge, then that column of Z
  205: *>          contains the latest approximation to the eigenvector, and the
  206: *>          index of the eigenvector is returned in IFAIL.
  207: *>          Note: the user must ensure that at least max(1,M) columns are
  208: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  209: *>          is not known in advance and an upper bound must be used.
  210: *> \endverbatim
  211: *>
  212: *> \param[in] LDZ
  213: *> \verbatim
  214: *>          LDZ is INTEGER
  215: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  216: *>          JOBZ = 'V', LDZ >= max(1,N).
  217: *> \endverbatim
  218: *>
  219: *> \param[out] WORK
  220: *> \verbatim
  221: *>          WORK is DOUBLE PRECISION array, dimension (8*N)
  222: *> \endverbatim
  223: *>
  224: *> \param[out] IWORK
  225: *> \verbatim
  226: *>          IWORK is INTEGER array, dimension (5*N)
  227: *> \endverbatim
  228: *>
  229: *> \param[out] IFAIL
  230: *> \verbatim
  231: *>          IFAIL is INTEGER array, dimension (N)
  232: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  233: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  234: *>          indices of the eigenvectors that failed to converge.
  235: *>          If JOBZ = 'N', then IFAIL is not referenced.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] INFO
  239: *> \verbatim
  240: *>          INFO is INTEGER
  241: *>          = 0:  successful exit
  242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  243: *>          > 0:  DPPTRF or DSPEVX returned an error code:
  244: *>             <= N:  if INFO = i, DSPEVX failed to converge;
  245: *>                    i eigenvectors failed to converge.  Their indices
  246: *>                    are stored in array IFAIL.
  247: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  248: *>                    minor of order i of B is not positive definite.
  249: *>                    The factorization of B could not be completed and
  250: *>                    no eigenvalues or eigenvectors were computed.
  251: *> \endverbatim
  252: *
  253: *  Authors:
  254: *  ========
  255: *
  256: *> \author Univ. of Tennessee
  257: *> \author Univ. of California Berkeley
  258: *> \author Univ. of Colorado Denver
  259: *> \author NAG Ltd.
  260: *
  261: *> \ingroup doubleOTHEReigen
  262: *
  263: *> \par Contributors:
  264: *  ==================
  265: *>
  266: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  267: *
  268: *  =====================================================================
  269:       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
  270:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
  271:      $                   IFAIL, INFO )
  272: *
  273: *  -- LAPACK driver routine --
  274: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  275: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  276: *
  277: *     .. Scalar Arguments ..
  278:       CHARACTER          JOBZ, RANGE, UPLO
  279:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
  280:       DOUBLE PRECISION   ABSTOL, VL, VU
  281: *     ..
  282: *     .. Array Arguments ..
  283:       INTEGER            IFAIL( * ), IWORK( * )
  284:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
  285:      $                   Z( LDZ, * )
  286: *     ..
  287: *
  288: * =====================================================================
  289: *
  290: *     .. Local Scalars ..
  291:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
  292:       CHARACTER          TRANS
  293:       INTEGER            J
  294: *     ..
  295: *     .. External Functions ..
  296:       LOGICAL            LSAME
  297:       EXTERNAL           LSAME
  298: *     ..
  299: *     .. External Subroutines ..
  300:       EXTERNAL           DPPTRF, DSPEVX, DSPGST, DTPMV, DTPSV, XERBLA
  301: *     ..
  302: *     .. Intrinsic Functions ..
  303:       INTRINSIC          MIN
  304: *     ..
  305: *     .. Executable Statements ..
  306: *
  307: *     Test the input parameters.
  308: *
  309:       UPPER = LSAME( UPLO, 'U' )
  310:       WANTZ = LSAME( JOBZ, 'V' )
  311:       ALLEIG = LSAME( RANGE, 'A' )
  312:       VALEIG = LSAME( RANGE, 'V' )
  313:       INDEIG = LSAME( RANGE, 'I' )
  314: *
  315:       INFO = 0
  316:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  317:          INFO = -1
  318:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  319:          INFO = -2
  320:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  321:          INFO = -3
  322:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  323:          INFO = -4
  324:       ELSE IF( N.LT.0 ) THEN
  325:          INFO = -5
  326:       ELSE
  327:          IF( VALEIG ) THEN
  328:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
  329:                INFO = -9
  330:             END IF
  331:          ELSE IF( INDEIG ) THEN
  332:             IF( IL.LT.1 ) THEN
  333:                INFO = -10
  334:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  335:                INFO = -11
  336:             END IF
  337:          END IF
  338:       END IF
  339:       IF( INFO.EQ.0 ) THEN
  340:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  341:             INFO = -16
  342:          END IF
  343:       END IF
  344: *
  345:       IF( INFO.NE.0 ) THEN
  346:          CALL XERBLA( 'DSPGVX', -INFO )
  347:          RETURN
  348:       END IF
  349: *
  350: *     Quick return if possible
  351: *
  352:       M = 0
  353:       IF( N.EQ.0 )
  354:      $   RETURN
  355: *
  356: *     Form a Cholesky factorization of B.
  357: *
  358:       CALL DPPTRF( UPLO, N, BP, INFO )
  359:       IF( INFO.NE.0 ) THEN
  360:          INFO = N + INFO
  361:          RETURN
  362:       END IF
  363: *
  364: *     Transform problem to standard eigenvalue problem and solve.
  365: *
  366:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  367:       CALL DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
  368:      $             W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
  369: *
  370:       IF( WANTZ ) THEN
  371: *
  372: *        Backtransform eigenvectors to the original problem.
  373: *
  374:          IF( INFO.GT.0 )
  375:      $      M = INFO - 1
  376:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  377: *
  378: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  379: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  380: *
  381:             IF( UPPER ) THEN
  382:                TRANS = 'N'
  383:             ELSE
  384:                TRANS = 'T'
  385:             END IF
  386: *
  387:             DO 10 J = 1, M
  388:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  389:      $                     1 )
  390:    10       CONTINUE
  391: *
  392:          ELSE IF( ITYPE.EQ.3 ) THEN
  393: *
  394: *           For B*A*x=(lambda)*x;
  395: *           backtransform eigenvectors: x = L*y or U**T*y
  396: *
  397:             IF( UPPER ) THEN
  398:                TRANS = 'T'
  399:             ELSE
  400:                TRANS = 'N'
  401:             END IF
  402: *
  403:             DO 20 J = 1, M
  404:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  405:      $                     1 )
  406:    20       CONTINUE
  407:          END IF
  408:       END IF
  409: *
  410:       RETURN
  411: *
  412: *     End of DSPGVX
  413: *
  414:       END

CVSweb interface <joel.bertrand@systella.fr>