Annotation of rpl/lapack/lapack/dspgvx.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DSPGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSPGVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
        !            22: *                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
        !            23: *                          IFAIL, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBZ, RANGE, UPLO
        !            27: *       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
        !            28: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IFAIL( * ), IWORK( * )
        !            32: *       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
        !            33: *      $                   Z( LDZ, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DSPGVX computes selected eigenvalues, and optionally, eigenvectors
        !            43: *> of a real generalized symmetric-definite eigenproblem, of the form
        !            44: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
        !            45: *> and B are assumed to be symmetric, stored in packed storage, and B
        !            46: *> is also positive definite.  Eigenvalues and eigenvectors can be
        !            47: *> selected by specifying either a range of values or a range of indices
        !            48: *> for the desired eigenvalues.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] ITYPE
        !            55: *> \verbatim
        !            56: *>          ITYPE is INTEGER
        !            57: *>          Specifies the problem type to be solved:
        !            58: *>          = 1:  A*x = (lambda)*B*x
        !            59: *>          = 2:  A*B*x = (lambda)*x
        !            60: *>          = 3:  B*A*x = (lambda)*x
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] JOBZ
        !            64: *> \verbatim
        !            65: *>          JOBZ is CHARACTER*1
        !            66: *>          = 'N':  Compute eigenvalues only;
        !            67: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] RANGE
        !            71: *> \verbatim
        !            72: *>          RANGE is CHARACTER*1
        !            73: *>          = 'A': all eigenvalues will be found.
        !            74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            75: *>                 will be found.
        !            76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] UPLO
        !            80: *> \verbatim
        !            81: *>          UPLO is CHARACTER*1
        !            82: *>          = 'U':  Upper triangle of A and B are stored;
        !            83: *>          = 'L':  Lower triangle of A and B are stored.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] N
        !            87: *> \verbatim
        !            88: *>          N is INTEGER
        !            89: *>          The order of the matrix pencil (A,B).  N >= 0.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in,out] AP
        !            93: *> \verbatim
        !            94: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            95: *>          On entry, the upper or lower triangle of the symmetric matrix
        !            96: *>          A, packed columnwise in a linear array.  The j-th column of A
        !            97: *>          is stored in the array AP as follows:
        !            98: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            99: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !           100: *>
        !           101: *>          On exit, the contents of AP are destroyed.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in,out] BP
        !           105: *> \verbatim
        !           106: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !           107: *>          On entry, the upper or lower triangle of the symmetric matrix
        !           108: *>          B, packed columnwise in a linear array.  The j-th column of B
        !           109: *>          is stored in the array BP as follows:
        !           110: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
        !           111: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
        !           112: *>
        !           113: *>          On exit, the triangular factor U or L from the Cholesky
        !           114: *>          factorization B = U**T*U or B = L*L**T, in the same storage
        !           115: *>          format as B.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] VL
        !           119: *> \verbatim
        !           120: *>          VL is DOUBLE PRECISION
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] VU
        !           124: *> \verbatim
        !           125: *>          VU is DOUBLE PRECISION
        !           126: *>
        !           127: *>          If RANGE='V', the lower and upper bounds of the interval to
        !           128: *>          be searched for eigenvalues. VL < VU.
        !           129: *>          Not referenced if RANGE = 'A' or 'I'.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] IL
        !           133: *> \verbatim
        !           134: *>          IL is INTEGER
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[in] IU
        !           138: *> \verbatim
        !           139: *>          IU is INTEGER
        !           140: *>
        !           141: *>          If RANGE='I', the indices (in ascending order) of the
        !           142: *>          smallest and largest eigenvalues to be returned.
        !           143: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           144: *>          Not referenced if RANGE = 'A' or 'V'.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in] ABSTOL
        !           148: *> \verbatim
        !           149: *>          ABSTOL is DOUBLE PRECISION
        !           150: *>          The absolute error tolerance for the eigenvalues.
        !           151: *>          An approximate eigenvalue is accepted as converged
        !           152: *>          when it is determined to lie in an interval [a,b]
        !           153: *>          of width less than or equal to
        !           154: *>
        !           155: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           156: *>
        !           157: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           158: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           159: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           160: *>          by reducing A to tridiagonal form.
        !           161: *>
        !           162: *>          Eigenvalues will be computed most accurately when ABSTOL is
        !           163: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           164: *>          If this routine returns with INFO>0, indicating that some
        !           165: *>          eigenvectors did not converge, try setting ABSTOL to
        !           166: *>          2*DLAMCH('S').
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[out] M
        !           170: *> \verbatim
        !           171: *>          M is INTEGER
        !           172: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           173: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           174: *> \endverbatim
        !           175: *>
        !           176: *> \param[out] W
        !           177: *> \verbatim
        !           178: *>          W is DOUBLE PRECISION array, dimension (N)
        !           179: *>          On normal exit, the first M elements contain the selected
        !           180: *>          eigenvalues in ascending order.
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[out] Z
        !           184: *> \verbatim
        !           185: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
        !           186: *>          If JOBZ = 'N', then Z is not referenced.
        !           187: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           188: *>          contain the orthonormal eigenvectors of the matrix A
        !           189: *>          corresponding to the selected eigenvalues, with the i-th
        !           190: *>          column of Z holding the eigenvector associated with W(i).
        !           191: *>          The eigenvectors are normalized as follows:
        !           192: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !           193: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !           194: *>
        !           195: *>          If an eigenvector fails to converge, then that column of Z
        !           196: *>          contains the latest approximation to the eigenvector, and the
        !           197: *>          index of the eigenvector is returned in IFAIL.
        !           198: *>          Note: the user must ensure that at least max(1,M) columns are
        !           199: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           200: *>          is not known in advance and an upper bound must be used.
        !           201: *> \endverbatim
        !           202: *>
        !           203: *> \param[in] LDZ
        !           204: *> \verbatim
        !           205: *>          LDZ is INTEGER
        !           206: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           207: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           208: *> \endverbatim
        !           209: *>
        !           210: *> \param[out] WORK
        !           211: *> \verbatim
        !           212: *>          WORK is DOUBLE PRECISION array, dimension (8*N)
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[out] IWORK
        !           216: *> \verbatim
        !           217: *>          IWORK is INTEGER array, dimension (5*N)
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[out] IFAIL
        !           221: *> \verbatim
        !           222: *>          IFAIL is INTEGER array, dimension (N)
        !           223: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           224: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           225: *>          indices of the eigenvectors that failed to converge.
        !           226: *>          If JOBZ = 'N', then IFAIL is not referenced.
        !           227: *> \endverbatim
        !           228: *>
        !           229: *> \param[out] INFO
        !           230: *> \verbatim
        !           231: *>          INFO is INTEGER
        !           232: *>          = 0:  successful exit
        !           233: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           234: *>          > 0:  DPPTRF or DSPEVX returned an error code:
        !           235: *>             <= N:  if INFO = i, DSPEVX failed to converge;
        !           236: *>                    i eigenvectors failed to converge.  Their indices
        !           237: *>                    are stored in array IFAIL.
        !           238: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           239: *>                    minor of order i of B is not positive definite.
        !           240: *>                    The factorization of B could not be completed and
        !           241: *>                    no eigenvalues or eigenvectors were computed.
        !           242: *> \endverbatim
        !           243: *
        !           244: *  Authors:
        !           245: *  ========
        !           246: *
        !           247: *> \author Univ. of Tennessee 
        !           248: *> \author Univ. of California Berkeley 
        !           249: *> \author Univ. of Colorado Denver 
        !           250: *> \author NAG Ltd. 
        !           251: *
        !           252: *> \date November 2011
        !           253: *
        !           254: *> \ingroup doubleOTHEReigen
        !           255: *
        !           256: *> \par Contributors:
        !           257: *  ==================
        !           258: *>
        !           259: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           260: *
        !           261: *  =====================================================================
1.1       bertrand  262:       SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
                    263:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK,
                    264:      $                   IFAIL, INFO )
                    265: *
1.9     ! bertrand  266: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  269: *     November 2011
1.1       bertrand  270: *
                    271: *     .. Scalar Arguments ..
                    272:       CHARACTER          JOBZ, RANGE, UPLO
                    273:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
                    274:       DOUBLE PRECISION   ABSTOL, VL, VU
                    275: *     ..
                    276: *     .. Array Arguments ..
                    277:       INTEGER            IFAIL( * ), IWORK( * )
                    278:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                    279:      $                   Z( LDZ, * )
                    280: *     ..
                    281: *
                    282: * =====================================================================
                    283: *
                    284: *     .. Local Scalars ..
                    285:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
                    286:       CHARACTER          TRANS
                    287:       INTEGER            J
                    288: *     ..
                    289: *     .. External Functions ..
                    290:       LOGICAL            LSAME
                    291:       EXTERNAL           LSAME
                    292: *     ..
                    293: *     .. External Subroutines ..
                    294:       EXTERNAL           DPPTRF, DSPEVX, DSPGST, DTPMV, DTPSV, XERBLA
                    295: *     ..
                    296: *     .. Intrinsic Functions ..
                    297:       INTRINSIC          MIN
                    298: *     ..
                    299: *     .. Executable Statements ..
                    300: *
                    301: *     Test the input parameters.
                    302: *
                    303:       UPPER = LSAME( UPLO, 'U' )
                    304:       WANTZ = LSAME( JOBZ, 'V' )
                    305:       ALLEIG = LSAME( RANGE, 'A' )
                    306:       VALEIG = LSAME( RANGE, 'V' )
                    307:       INDEIG = LSAME( RANGE, 'I' )
                    308: *
                    309:       INFO = 0
                    310:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    311:          INFO = -1
                    312:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    313:          INFO = -2
                    314:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    315:          INFO = -3
                    316:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    317:          INFO = -4
                    318:       ELSE IF( N.LT.0 ) THEN
                    319:          INFO = -5
                    320:       ELSE
                    321:          IF( VALEIG ) THEN
                    322:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
                    323:                INFO = -9
                    324:             END IF
                    325:          ELSE IF( INDEIG ) THEN
                    326:             IF( IL.LT.1 ) THEN
                    327:                INFO = -10
                    328:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    329:                INFO = -11
                    330:             END IF
                    331:          END IF
                    332:       END IF
                    333:       IF( INFO.EQ.0 ) THEN
                    334:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    335:             INFO = -16
                    336:          END IF
                    337:       END IF
                    338: *
                    339:       IF( INFO.NE.0 ) THEN
                    340:          CALL XERBLA( 'DSPGVX', -INFO )
                    341:          RETURN
                    342:       END IF
                    343: *
                    344: *     Quick return if possible
                    345: *
                    346:       M = 0
                    347:       IF( N.EQ.0 )
                    348:      $   RETURN
                    349: *
                    350: *     Form a Cholesky factorization of B.
                    351: *
                    352:       CALL DPPTRF( UPLO, N, BP, INFO )
                    353:       IF( INFO.NE.0 ) THEN
                    354:          INFO = N + INFO
                    355:          RETURN
                    356:       END IF
                    357: *
                    358: *     Transform problem to standard eigenvalue problem and solve.
                    359: *
                    360:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    361:       CALL DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
                    362:      $             W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
                    363: *
                    364:       IF( WANTZ ) THEN
                    365: *
                    366: *        Backtransform eigenvectors to the original problem.
                    367: *
                    368:          IF( INFO.GT.0 )
                    369:      $      M = INFO - 1
                    370:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    371: *
                    372: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  373: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  374: *
                    375:             IF( UPPER ) THEN
                    376:                TRANS = 'N'
                    377:             ELSE
                    378:                TRANS = 'T'
                    379:             END IF
                    380: *
                    381:             DO 10 J = 1, M
                    382:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    383:      $                     1 )
                    384:    10       CONTINUE
                    385: *
                    386:          ELSE IF( ITYPE.EQ.3 ) THEN
                    387: *
                    388: *           For B*A*x=(lambda)*x;
1.8       bertrand  389: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  390: *
                    391:             IF( UPPER ) THEN
                    392:                TRANS = 'T'
                    393:             ELSE
                    394:                TRANS = 'N'
                    395:             END IF
                    396: *
                    397:             DO 20 J = 1, M
                    398:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    399:      $                     1 )
                    400:    20       CONTINUE
                    401:          END IF
                    402:       END IF
                    403: *
                    404:       RETURN
                    405: *
                    406: *     End of DSPGVX
                    407: *
                    408:       END

CVSweb interface <joel.bertrand@systella.fr>