Annotation of rpl/lapack/lapack/dspgvd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DSPGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSPGVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
        !            22: *                          LWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
        !            31: *      $                   Z( LDZ, * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            41: *> of a real generalized symmetric-definite eigenproblem, of the form
        !            42: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
        !            43: *> B are assumed to be symmetric, stored in packed format, and B is also
        !            44: *> positive definite.
        !            45: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
        !            46: *>
        !            47: *> The divide and conquer algorithm makes very mild assumptions about
        !            48: *> floating point arithmetic. It will work on machines with a guard
        !            49: *> digit in add/subtract, or on those binary machines without guard
        !            50: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            51: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            52: *> without guard digits, but we know of none.
        !            53: *> \endverbatim
        !            54: *
        !            55: *  Arguments:
        !            56: *  ==========
        !            57: *
        !            58: *> \param[in] ITYPE
        !            59: *> \verbatim
        !            60: *>          ITYPE is INTEGER
        !            61: *>          Specifies the problem type to be solved:
        !            62: *>          = 1:  A*x = (lambda)*B*x
        !            63: *>          = 2:  A*B*x = (lambda)*x
        !            64: *>          = 3:  B*A*x = (lambda)*x
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] JOBZ
        !            68: *> \verbatim
        !            69: *>          JOBZ is CHARACTER*1
        !            70: *>          = 'N':  Compute eigenvalues only;
        !            71: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] UPLO
        !            75: *> \verbatim
        !            76: *>          UPLO is CHARACTER*1
        !            77: *>          = 'U':  Upper triangles of A and B are stored;
        !            78: *>          = 'L':  Lower triangles of A and B are stored.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] N
        !            82: *> \verbatim
        !            83: *>          N is INTEGER
        !            84: *>          The order of the matrices A and B.  N >= 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in,out] AP
        !            88: *> \verbatim
        !            89: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            90: *>          On entry, the upper or lower triangle of the symmetric matrix
        !            91: *>          A, packed columnwise in a linear array.  The j-th column of A
        !            92: *>          is stored in the array AP as follows:
        !            93: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            94: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            95: *>
        !            96: *>          On exit, the contents of AP are destroyed.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in,out] BP
        !           100: *> \verbatim
        !           101: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !           102: *>          On entry, the upper or lower triangle of the symmetric matrix
        !           103: *>          B, packed columnwise in a linear array.  The j-th column of B
        !           104: *>          is stored in the array BP as follows:
        !           105: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
        !           106: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
        !           107: *>
        !           108: *>          On exit, the triangular factor U or L from the Cholesky
        !           109: *>          factorization B = U**T*U or B = L*L**T, in the same storage
        !           110: *>          format as B.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] W
        !           114: *> \verbatim
        !           115: *>          W is DOUBLE PRECISION array, dimension (N)
        !           116: *>          If INFO = 0, the eigenvalues in ascending order.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[out] Z
        !           120: *> \verbatim
        !           121: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
        !           122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           123: *>          eigenvectors.  The eigenvectors are normalized as follows:
        !           124: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !           125: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !           126: *>          If JOBZ = 'N', then Z is not referenced.
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[in] LDZ
        !           130: *> \verbatim
        !           131: *>          LDZ is INTEGER
        !           132: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           133: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] WORK
        !           137: *> \verbatim
        !           138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           139: *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LWORK
        !           143: *> \verbatim
        !           144: *>          LWORK is INTEGER
        !           145: *>          The dimension of the array WORK.
        !           146: *>          If N <= 1,               LWORK >= 1.
        !           147: *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
        !           148: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
        !           149: *>
        !           150: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           151: *>          only calculates the required sizes of the WORK and IWORK
        !           152: *>          arrays, returns these values as the first entries of the WORK
        !           153: *>          and IWORK arrays, and no error message related to LWORK or
        !           154: *>          LIWORK is issued by XERBLA.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[out] IWORK
        !           158: *> \verbatim
        !           159: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           160: *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[in] LIWORK
        !           164: *> \verbatim
        !           165: *>          LIWORK is INTEGER
        !           166: *>          The dimension of the array IWORK.
        !           167: *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
        !           168: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           169: *>
        !           170: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           171: *>          routine only calculates the required sizes of the WORK and
        !           172: *>          IWORK arrays, returns these values as the first entries of
        !           173: *>          the WORK and IWORK arrays, and no error message related to
        !           174: *>          LWORK or LIWORK is issued by XERBLA.
        !           175: *> \endverbatim
        !           176: *>
        !           177: *> \param[out] INFO
        !           178: *> \verbatim
        !           179: *>          INFO is INTEGER
        !           180: *>          = 0:  successful exit
        !           181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           182: *>          > 0:  DPPTRF or DSPEVD returned an error code:
        !           183: *>             <= N:  if INFO = i, DSPEVD failed to converge;
        !           184: *>                    i off-diagonal elements of an intermediate
        !           185: *>                    tridiagonal form did not converge to zero;
        !           186: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           187: *>                    minor of order i of B is not positive definite.
        !           188: *>                    The factorization of B could not be completed and
        !           189: *>                    no eigenvalues or eigenvectors were computed.
        !           190: *> \endverbatim
        !           191: *
        !           192: *  Authors:
        !           193: *  ========
        !           194: *
        !           195: *> \author Univ. of Tennessee 
        !           196: *> \author Univ. of California Berkeley 
        !           197: *> \author Univ. of Colorado Denver 
        !           198: *> \author NAG Ltd. 
        !           199: *
        !           200: *> \date November 2011
        !           201: *
        !           202: *> \ingroup doubleOTHEReigen
        !           203: *
        !           204: *> \par Contributors:
        !           205: *  ==================
        !           206: *>
        !           207: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           208: *
        !           209: *  =====================================================================
1.1       bertrand  210:       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                    211:      $                   LWORK, IWORK, LIWORK, INFO )
                    212: *
1.9     ! bertrand  213: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  214: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    215: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  216: *     November 2011
1.1       bertrand  217: *
                    218: *     .. Scalar Arguments ..
                    219:       CHARACTER          JOBZ, UPLO
                    220:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
                    221: *     ..
                    222: *     .. Array Arguments ..
                    223:       INTEGER            IWORK( * )
                    224:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                    225:      $                   Z( LDZ, * )
                    226: *     ..
                    227: *
                    228: *  =====================================================================
                    229: *
                    230: *     .. Parameters ..
                    231:       DOUBLE PRECISION   TWO
                    232:       PARAMETER          ( TWO = 2.0D+0 )
                    233: *     ..
                    234: *     .. Local Scalars ..
                    235:       LOGICAL            LQUERY, UPPER, WANTZ
                    236:       CHARACTER          TRANS
                    237:       INTEGER            J, LIWMIN, LWMIN, NEIG
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       LOGICAL            LSAME
                    241:       EXTERNAL           LSAME
                    242: *     ..
                    243: *     .. External Subroutines ..
                    244:       EXTERNAL           DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
                    245: *     ..
                    246: *     .. Intrinsic Functions ..
                    247:       INTRINSIC          DBLE, MAX
                    248: *     ..
                    249: *     .. Executable Statements ..
                    250: *
                    251: *     Test the input parameters.
                    252: *
                    253:       WANTZ = LSAME( JOBZ, 'V' )
                    254:       UPPER = LSAME( UPLO, 'U' )
                    255:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    256: *
                    257:       INFO = 0
                    258:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    259:          INFO = -1
                    260:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    261:          INFO = -2
                    262:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    263:          INFO = -3
                    264:       ELSE IF( N.LT.0 ) THEN
                    265:          INFO = -4
                    266:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    267:          INFO = -9
                    268:       END IF
                    269: *
                    270:       IF( INFO.EQ.0 ) THEN
                    271:          IF( N.LE.1 ) THEN
                    272:             LIWMIN = 1
                    273:             LWMIN = 1
                    274:          ELSE
                    275:             IF( WANTZ ) THEN
                    276:                LIWMIN = 3 + 5*N
                    277:                LWMIN = 1 + 6*N + 2*N**2
                    278:             ELSE
                    279:                LIWMIN = 1
                    280:                LWMIN = 2*N
                    281:             END IF
                    282:          END IF
                    283:          WORK( 1 ) = LWMIN
                    284:          IWORK( 1 ) = LIWMIN
                    285:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    286:             INFO = -11
                    287:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    288:             INFO = -13
                    289:          END IF
                    290:       END IF
                    291: *
                    292:       IF( INFO.NE.0 ) THEN
                    293:          CALL XERBLA( 'DSPGVD', -INFO )
                    294:          RETURN
                    295:       ELSE IF( LQUERY ) THEN
                    296:          RETURN
                    297:       END IF
                    298: *
                    299: *     Quick return if possible
                    300: *
                    301:       IF( N.EQ.0 )
                    302:      $   RETURN
                    303: *
                    304: *     Form a Cholesky factorization of BP.
                    305: *
                    306:       CALL DPPTRF( UPLO, N, BP, INFO )
                    307:       IF( INFO.NE.0 ) THEN
                    308:          INFO = N + INFO
                    309:          RETURN
                    310:       END IF
                    311: *
                    312: *     Transform problem to standard eigenvalue problem and solve.
                    313: *
                    314:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    315:       CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
                    316:      $             LIWORK, INFO )
                    317:       LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
                    318:       LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
                    319: *
                    320:       IF( WANTZ ) THEN
                    321: *
                    322: *        Backtransform eigenvectors to the original problem.
                    323: *
                    324:          NEIG = N
                    325:          IF( INFO.GT.0 )
                    326:      $      NEIG = INFO - 1
                    327:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    328: *
                    329: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  330: *           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
1.1       bertrand  331: *
                    332:             IF( UPPER ) THEN
                    333:                TRANS = 'N'
                    334:             ELSE
                    335:                TRANS = 'T'
                    336:             END IF
                    337: *
                    338:             DO 10 J = 1, NEIG
                    339:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    340:      $                     1 )
                    341:    10       CONTINUE
                    342: *
                    343:          ELSE IF( ITYPE.EQ.3 ) THEN
                    344: *
                    345: *           For B*A*x=(lambda)*x;
1.8       bertrand  346: *           backtransform eigenvectors: x = L*y or U**T *y
1.1       bertrand  347: *
                    348:             IF( UPPER ) THEN
                    349:                TRANS = 'T'
                    350:             ELSE
                    351:                TRANS = 'N'
                    352:             END IF
                    353: *
                    354:             DO 20 J = 1, NEIG
                    355:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    356:      $                     1 )
                    357:    20       CONTINUE
                    358:          END IF
                    359:       END IF
                    360: *
                    361:       WORK( 1 ) = LWMIN
                    362:       IWORK( 1 ) = LIWMIN
                    363: *
                    364:       RETURN
                    365: *
                    366: *     End of DSPGVD
                    367: *
                    368:       END

CVSweb interface <joel.bertrand@systella.fr>