Annotation of rpl/lapack/lapack/dspgvd.f, revision 1.20

1.15      bertrand    1: *> \brief \b DSPGVD
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DSPGVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgvd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgvd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgvd.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                     22: *                          LWORK, IWORK, LIWORK, INFO )
1.17      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                     31: *      $                   Z( LDZ, * )
                     32: *       ..
1.17      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
                     41: *> of a real generalized symmetric-definite eigenproblem, of the form
                     42: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     43: *> B are assumed to be symmetric, stored in packed format, and B is also
                     44: *> positive definite.
                     45: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
                     46: *>
                     47: *> The divide and conquer algorithm makes very mild assumptions about
                     48: *> floating point arithmetic. It will work on machines with a guard
                     49: *> digit in add/subtract, or on those binary machines without guard
                     50: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     51: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     52: *> without guard digits, but we know of none.
                     53: *> \endverbatim
                     54: *
                     55: *  Arguments:
                     56: *  ==========
                     57: *
                     58: *> \param[in] ITYPE
                     59: *> \verbatim
                     60: *>          ITYPE is INTEGER
                     61: *>          Specifies the problem type to be solved:
                     62: *>          = 1:  A*x = (lambda)*B*x
                     63: *>          = 2:  A*B*x = (lambda)*x
                     64: *>          = 3:  B*A*x = (lambda)*x
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] JOBZ
                     68: *> \verbatim
                     69: *>          JOBZ is CHARACTER*1
                     70: *>          = 'N':  Compute eigenvalues only;
                     71: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] UPLO
                     75: *> \verbatim
                     76: *>          UPLO is CHARACTER*1
                     77: *>          = 'U':  Upper triangles of A and B are stored;
                     78: *>          = 'L':  Lower triangles of A and B are stored.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] N
                     82: *> \verbatim
                     83: *>          N is INTEGER
                     84: *>          The order of the matrices A and B.  N >= 0.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in,out] AP
                     88: *> \verbatim
                     89: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     90: *>          On entry, the upper or lower triangle of the symmetric matrix
                     91: *>          A, packed columnwise in a linear array.  The j-th column of A
                     92: *>          is stored in the array AP as follows:
                     93: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     94: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     95: *>
                     96: *>          On exit, the contents of AP are destroyed.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in,out] BP
                    100: *> \verbatim
                    101: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                    102: *>          On entry, the upper or lower triangle of the symmetric matrix
                    103: *>          B, packed columnwise in a linear array.  The j-th column of B
                    104: *>          is stored in the array BP as follows:
                    105: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                    106: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                    107: *>
                    108: *>          On exit, the triangular factor U or L from the Cholesky
                    109: *>          factorization B = U**T*U or B = L*L**T, in the same storage
                    110: *>          format as B.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] W
                    114: *> \verbatim
                    115: *>          W is DOUBLE PRECISION array, dimension (N)
                    116: *>          If INFO = 0, the eigenvalues in ascending order.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] Z
                    120: *> \verbatim
                    121: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    123: *>          eigenvectors.  The eigenvectors are normalized as follows:
                    124: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
                    125: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
                    126: *>          If JOBZ = 'N', then Z is not referenced.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDZ
                    130: *> \verbatim
                    131: *>          LDZ is INTEGER
                    132: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    133: *>          JOBZ = 'V', LDZ >= max(1,N).
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] WORK
                    137: *> \verbatim
                    138: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    139: *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] LWORK
                    143: *> \verbatim
                    144: *>          LWORK is INTEGER
                    145: *>          The dimension of the array WORK.
                    146: *>          If N <= 1,               LWORK >= 1.
                    147: *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
                    148: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
                    149: *>
                    150: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    151: *>          only calculates the required sizes of the WORK and IWORK
                    152: *>          arrays, returns these values as the first entries of the WORK
                    153: *>          and IWORK arrays, and no error message related to LWORK or
                    154: *>          LIWORK is issued by XERBLA.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] IWORK
                    158: *> \verbatim
                    159: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    160: *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[in] LIWORK
                    164: *> \verbatim
                    165: *>          LIWORK is INTEGER
                    166: *>          The dimension of the array IWORK.
                    167: *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                    168: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    169: *>
                    170: *>          If LIWORK = -1, then a workspace query is assumed; the
                    171: *>          routine only calculates the required sizes of the WORK and
                    172: *>          IWORK arrays, returns these values as the first entries of
                    173: *>          the WORK and IWORK arrays, and no error message related to
                    174: *>          LWORK or LIWORK is issued by XERBLA.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    182: *>          > 0:  DPPTRF or DSPEVD returned an error code:
                    183: *>             <= N:  if INFO = i, DSPEVD failed to converge;
                    184: *>                    i off-diagonal elements of an intermediate
                    185: *>                    tridiagonal form did not converge to zero;
                    186: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    187: *>                    minor of order i of B is not positive definite.
                    188: *>                    The factorization of B could not be completed and
                    189: *>                    no eigenvalues or eigenvectors were computed.
                    190: *> \endverbatim
                    191: *
                    192: *  Authors:
                    193: *  ========
                    194: *
1.17      bertrand  195: *> \author Univ. of Tennessee
                    196: *> \author Univ. of California Berkeley
                    197: *> \author Univ. of Colorado Denver
                    198: *> \author NAG Ltd.
1.9       bertrand  199: *
                    200: *> \ingroup doubleOTHEReigen
                    201: *
                    202: *> \par Contributors:
                    203: *  ==================
                    204: *>
                    205: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    206: *
                    207: *  =====================================================================
1.1       bertrand  208:       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                    209:      $                   LWORK, IWORK, LIWORK, INFO )
                    210: *
1.20    ! bertrand  211: *  -- LAPACK driver routine --
1.1       bertrand  212: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    213: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    214: *
                    215: *     .. Scalar Arguments ..
                    216:       CHARACTER          JOBZ, UPLO
                    217:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
                    218: *     ..
                    219: *     .. Array Arguments ..
                    220:       INTEGER            IWORK( * )
                    221:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                    222:      $                   Z( LDZ, * )
                    223: *     ..
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            LQUERY, UPPER, WANTZ
                    229:       CHARACTER          TRANS
                    230:       INTEGER            J, LIWMIN, LWMIN, NEIG
                    231: *     ..
                    232: *     .. External Functions ..
                    233:       LOGICAL            LSAME
                    234:       EXTERNAL           LSAME
                    235: *     ..
                    236: *     .. External Subroutines ..
                    237:       EXTERNAL           DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
                    238: *     ..
                    239: *     .. Intrinsic Functions ..
                    240:       INTRINSIC          DBLE, MAX
                    241: *     ..
                    242: *     .. Executable Statements ..
                    243: *
                    244: *     Test the input parameters.
                    245: *
                    246:       WANTZ = LSAME( JOBZ, 'V' )
                    247:       UPPER = LSAME( UPLO, 'U' )
                    248:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    249: *
                    250:       INFO = 0
                    251:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    256:          INFO = -3
                    257:       ELSE IF( N.LT.0 ) THEN
                    258:          INFO = -4
                    259:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    260:          INFO = -9
                    261:       END IF
                    262: *
                    263:       IF( INFO.EQ.0 ) THEN
                    264:          IF( N.LE.1 ) THEN
                    265:             LIWMIN = 1
                    266:             LWMIN = 1
                    267:          ELSE
                    268:             IF( WANTZ ) THEN
                    269:                LIWMIN = 3 + 5*N
                    270:                LWMIN = 1 + 6*N + 2*N**2
                    271:             ELSE
                    272:                LIWMIN = 1
                    273:                LWMIN = 2*N
                    274:             END IF
                    275:          END IF
                    276:          WORK( 1 ) = LWMIN
                    277:          IWORK( 1 ) = LIWMIN
                    278:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    279:             INFO = -11
                    280:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    281:             INFO = -13
                    282:          END IF
                    283:       END IF
                    284: *
                    285:       IF( INFO.NE.0 ) THEN
                    286:          CALL XERBLA( 'DSPGVD', -INFO )
                    287:          RETURN
                    288:       ELSE IF( LQUERY ) THEN
                    289:          RETURN
                    290:       END IF
                    291: *
                    292: *     Quick return if possible
                    293: *
                    294:       IF( N.EQ.0 )
                    295:      $   RETURN
                    296: *
                    297: *     Form a Cholesky factorization of BP.
                    298: *
                    299:       CALL DPPTRF( UPLO, N, BP, INFO )
                    300:       IF( INFO.NE.0 ) THEN
                    301:          INFO = N + INFO
                    302:          RETURN
                    303:       END IF
                    304: *
                    305: *     Transform problem to standard eigenvalue problem and solve.
                    306: *
                    307:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    308:       CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
                    309:      $             LIWORK, INFO )
1.20    ! bertrand  310:       LWMIN = INT( MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) ) )
        !           311:       LIWMIN = INT( MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) ) )
1.1       bertrand  312: *
                    313:       IF( WANTZ ) THEN
                    314: *
                    315: *        Backtransform eigenvectors to the original problem.
                    316: *
                    317:          NEIG = N
                    318:          IF( INFO.GT.0 )
                    319:      $      NEIG = INFO - 1
                    320:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    321: *
                    322: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  323: *           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
1.1       bertrand  324: *
                    325:             IF( UPPER ) THEN
                    326:                TRANS = 'N'
                    327:             ELSE
                    328:                TRANS = 'T'
                    329:             END IF
                    330: *
                    331:             DO 10 J = 1, NEIG
                    332:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    333:      $                     1 )
                    334:    10       CONTINUE
                    335: *
                    336:          ELSE IF( ITYPE.EQ.3 ) THEN
                    337: *
                    338: *           For B*A*x=(lambda)*x;
1.8       bertrand  339: *           backtransform eigenvectors: x = L*y or U**T *y
1.1       bertrand  340: *
                    341:             IF( UPPER ) THEN
                    342:                TRANS = 'T'
                    343:             ELSE
                    344:                TRANS = 'N'
                    345:             END IF
                    346: *
                    347:             DO 20 J = 1, NEIG
                    348:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    349:      $                     1 )
                    350:    20       CONTINUE
                    351:          END IF
                    352:       END IF
                    353: *
                    354:       WORK( 1 ) = LWMIN
                    355:       IWORK( 1 ) = LIWMIN
                    356: *
                    357:       RETURN
                    358: *
                    359: *     End of DSPGVD
                    360: *
                    361:       END

CVSweb interface <joel.bertrand@systella.fr>