Annotation of rpl/lapack/lapack/dspgvd.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                      2:      $                   LWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                     16:      $                   Z( LDZ, * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
                     23: *  of a real generalized symmetric-definite eigenproblem, of the form
                     24: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     25: *  B are assumed to be symmetric, stored in packed format, and B is also
                     26: *  positive definite.
                     27: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
                     28: *
                     29: *  The divide and conquer algorithm makes very mild assumptions about
                     30: *  floating point arithmetic. It will work on machines with a guard
                     31: *  digit in add/subtract, or on those binary machines without guard
                     32: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     33: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     34: *  without guard digits, but we know of none.
                     35: *
                     36: *  Arguments
                     37: *  =========
                     38: *
                     39: *  ITYPE   (input) INTEGER
                     40: *          Specifies the problem type to be solved:
                     41: *          = 1:  A*x = (lambda)*B*x
                     42: *          = 2:  A*B*x = (lambda)*x
                     43: *          = 3:  B*A*x = (lambda)*x
                     44: *
                     45: *  JOBZ    (input) CHARACTER*1
                     46: *          = 'N':  Compute eigenvalues only;
                     47: *          = 'V':  Compute eigenvalues and eigenvectors.
                     48: *
                     49: *  UPLO    (input) CHARACTER*1
                     50: *          = 'U':  Upper triangles of A and B are stored;
                     51: *          = 'L':  Lower triangles of A and B are stored.
                     52: *
                     53: *  N       (input) INTEGER
                     54: *          The order of the matrices A and B.  N >= 0.
                     55: *
                     56: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     57: *          On entry, the upper or lower triangle of the symmetric matrix
                     58: *          A, packed columnwise in a linear array.  The j-th column of A
                     59: *          is stored in the array AP as follows:
                     60: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     61: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     62: *
                     63: *          On exit, the contents of AP are destroyed.
                     64: *
                     65: *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     66: *          On entry, the upper or lower triangle of the symmetric matrix
                     67: *          B, packed columnwise in a linear array.  The j-th column of B
                     68: *          is stored in the array BP as follows:
                     69: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     70: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                     71: *
                     72: *          On exit, the triangular factor U or L from the Cholesky
                     73: *          factorization B = U**T*U or B = L*L**T, in the same storage
                     74: *          format as B.
                     75: *
                     76: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     77: *          If INFO = 0, the eigenvalues in ascending order.
                     78: *
                     79: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
                     80: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     81: *          eigenvectors.  The eigenvectors are normalized as follows:
                     82: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
                     83: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
                     84: *          If JOBZ = 'N', then Z is not referenced.
                     85: *
                     86: *  LDZ     (input) INTEGER
                     87: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     88: *          JOBZ = 'V', LDZ >= max(1,N).
                     89: *
                     90: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     91: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                     92: *
                     93: *  LWORK   (input) INTEGER
                     94: *          The dimension of the array WORK.
                     95: *          If N <= 1,               LWORK >= 1.
                     96: *          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
                     97: *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
                     98: *
                     99: *          If LWORK = -1, then a workspace query is assumed; the routine
                    100: *          only calculates the required sizes of the WORK and IWORK
                    101: *          arrays, returns these values as the first entries of the WORK
                    102: *          and IWORK arrays, and no error message related to LWORK or
                    103: *          LIWORK is issued by XERBLA.
                    104: *
                    105: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    106: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                    107: *
                    108: *  LIWORK  (input) INTEGER
                    109: *          The dimension of the array IWORK.
                    110: *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                    111: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    112: *
                    113: *          If LIWORK = -1, then a workspace query is assumed; the
                    114: *          routine only calculates the required sizes of the WORK and
                    115: *          IWORK arrays, returns these values as the first entries of
                    116: *          the WORK and IWORK arrays, and no error message related to
                    117: *          LWORK or LIWORK is issued by XERBLA.
                    118: *
                    119: *  INFO    (output) INTEGER
                    120: *          = 0:  successful exit
                    121: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    122: *          > 0:  DPPTRF or DSPEVD returned an error code:
                    123: *             <= N:  if INFO = i, DSPEVD failed to converge;
                    124: *                    i off-diagonal elements of an intermediate
                    125: *                    tridiagonal form did not converge to zero;
                    126: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    127: *                    minor of order i of B is not positive definite.
                    128: *                    The factorization of B could not be completed and
                    129: *                    no eigenvalues or eigenvectors were computed.
                    130: *
                    131: *  Further Details
                    132: *  ===============
                    133: *
                    134: *  Based on contributions by
                    135: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    136: *
                    137: *  =====================================================================
                    138: *
                    139: *     .. Parameters ..
                    140:       DOUBLE PRECISION   TWO
                    141:       PARAMETER          ( TWO = 2.0D+0 )
                    142: *     ..
                    143: *     .. Local Scalars ..
                    144:       LOGICAL            LQUERY, UPPER, WANTZ
                    145:       CHARACTER          TRANS
                    146:       INTEGER            J, LIWMIN, LWMIN, NEIG
                    147: *     ..
                    148: *     .. External Functions ..
                    149:       LOGICAL            LSAME
                    150:       EXTERNAL           LSAME
                    151: *     ..
                    152: *     .. External Subroutines ..
                    153:       EXTERNAL           DPPTRF, DSPEVD, DSPGST, DTPMV, DTPSV, XERBLA
                    154: *     ..
                    155: *     .. Intrinsic Functions ..
                    156:       INTRINSIC          DBLE, MAX
                    157: *     ..
                    158: *     .. Executable Statements ..
                    159: *
                    160: *     Test the input parameters.
                    161: *
                    162:       WANTZ = LSAME( JOBZ, 'V' )
                    163:       UPPER = LSAME( UPLO, 'U' )
                    164:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    165: *
                    166:       INFO = 0
                    167:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    168:          INFO = -1
                    169:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    170:          INFO = -2
                    171:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    172:          INFO = -3
                    173:       ELSE IF( N.LT.0 ) THEN
                    174:          INFO = -4
                    175:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    176:          INFO = -9
                    177:       END IF
                    178: *
                    179:       IF( INFO.EQ.0 ) THEN
                    180:          IF( N.LE.1 ) THEN
                    181:             LIWMIN = 1
                    182:             LWMIN = 1
                    183:          ELSE
                    184:             IF( WANTZ ) THEN
                    185:                LIWMIN = 3 + 5*N
                    186:                LWMIN = 1 + 6*N + 2*N**2
                    187:             ELSE
                    188:                LIWMIN = 1
                    189:                LWMIN = 2*N
                    190:             END IF
                    191:          END IF
                    192:          WORK( 1 ) = LWMIN
                    193:          IWORK( 1 ) = LIWMIN
                    194: *
                    195:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    196:             INFO = -11
                    197:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    198:             INFO = -13
                    199:          END IF
                    200:       END IF
                    201: *
                    202:       IF( INFO.NE.0 ) THEN
                    203:          CALL XERBLA( 'DSPGVD', -INFO )
                    204:          RETURN
                    205:       ELSE IF( LQUERY ) THEN
                    206:          RETURN
                    207:       END IF
                    208: *
                    209: *     Quick return if possible
                    210: *
                    211:       IF( N.EQ.0 )
                    212:      $   RETURN
                    213: *
                    214: *     Form a Cholesky factorization of BP.
                    215: *
                    216:       CALL DPPTRF( UPLO, N, BP, INFO )
                    217:       IF( INFO.NE.0 ) THEN
                    218:          INFO = N + INFO
                    219:          RETURN
                    220:       END IF
                    221: *
                    222: *     Transform problem to standard eigenvalue problem and solve.
                    223: *
                    224:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    225:       CALL DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
                    226:      $             LIWORK, INFO )
                    227:       LWMIN = MAX( DBLE( LWMIN ), DBLE( WORK( 1 ) ) )
                    228:       LIWMIN = MAX( DBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
                    229: *
                    230:       IF( WANTZ ) THEN
                    231: *
                    232: *        Backtransform eigenvectors to the original problem.
                    233: *
                    234:          NEIG = N
                    235:          IF( INFO.GT.0 )
                    236:      $      NEIG = INFO - 1
                    237:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    238: *
                    239: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    240: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    241: *
                    242:             IF( UPPER ) THEN
                    243:                TRANS = 'N'
                    244:             ELSE
                    245:                TRANS = 'T'
                    246:             END IF
                    247: *
                    248:             DO 10 J = 1, NEIG
                    249:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    250:      $                     1 )
                    251:    10       CONTINUE
                    252: *
                    253:          ELSE IF( ITYPE.EQ.3 ) THEN
                    254: *
                    255: *           For B*A*x=(lambda)*x;
                    256: *           backtransform eigenvectors: x = L*y or U'*y
                    257: *
                    258:             IF( UPPER ) THEN
                    259:                TRANS = 'T'
                    260:             ELSE
                    261:                TRANS = 'N'
                    262:             END IF
                    263: *
                    264:             DO 20 J = 1, NEIG
                    265:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    266:      $                     1 )
                    267:    20       CONTINUE
                    268:          END IF
                    269:       END IF
                    270: *
                    271:       WORK( 1 ) = LWMIN
                    272:       IWORK( 1 ) = LIWMIN
                    273: *
                    274:       RETURN
                    275: *
                    276: *     End of DSPGVD
                    277: *
                    278:       END

CVSweb interface <joel.bertrand@systella.fr>