Annotation of rpl/lapack/lapack/dspgv.f, revision 1.18

1.14      bertrand    1: *> \brief \b DSPGV
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DSPGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgv.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                     22: *                         INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDZ, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                     30: *      $                   Z( LDZ, * )
                     31: *       ..
1.16      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSPGV computes all the eigenvalues and, optionally, the eigenvectors
                     40: *> of a real generalized symmetric-definite eigenproblem, of the form
                     41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
                     42: *> Here A and B are assumed to be symmetric, stored in packed format,
                     43: *> and B is also positive definite.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] ITYPE
                     50: *> \verbatim
                     51: *>          ITYPE is INTEGER
                     52: *>          Specifies the problem type to be solved:
                     53: *>          = 1:  A*x = (lambda)*B*x
                     54: *>          = 2:  A*B*x = (lambda)*x
                     55: *>          = 3:  B*A*x = (lambda)*x
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] JOBZ
                     59: *> \verbatim
                     60: *>          JOBZ is CHARACTER*1
                     61: *>          = 'N':  Compute eigenvalues only;
                     62: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] UPLO
                     66: *> \verbatim
                     67: *>          UPLO is CHARACTER*1
                     68: *>          = 'U':  Upper triangles of A and B are stored;
                     69: *>          = 'L':  Lower triangles of A and B are stored.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrices A and B.  N >= 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] AP
                     79: *> \verbatim
1.18    ! bertrand   80: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
1.9       bertrand   81: *>          On entry, the upper or lower triangle of the symmetric matrix
                     82: *>          A, packed columnwise in a linear array.  The j-th column of A
                     83: *>          is stored in the array AP as follows:
                     84: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     85: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     86: *>
                     87: *>          On exit, the contents of AP are destroyed.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in,out] BP
                     91: *> \verbatim
                     92: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     93: *>          On entry, the upper or lower triangle of the symmetric matrix
                     94: *>          B, packed columnwise in a linear array.  The j-th column of B
                     95: *>          is stored in the array BP as follows:
                     96: *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     97: *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                     98: *>
                     99: *>          On exit, the triangular factor U or L from the Cholesky
                    100: *>          factorization B = U**T*U or B = L*L**T, in the same storage
                    101: *>          format as B.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[out] W
                    105: *> \verbatim
                    106: *>          W is DOUBLE PRECISION array, dimension (N)
                    107: *>          If INFO = 0, the eigenvalues in ascending order.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[out] Z
                    111: *> \verbatim
                    112: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    113: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    114: *>          eigenvectors.  The eigenvectors are normalized as follows:
                    115: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
                    116: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
                    117: *>          If JOBZ = 'N', then Z is not referenced.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDZ
                    121: *> \verbatim
                    122: *>          LDZ is INTEGER
                    123: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    124: *>          JOBZ = 'V', LDZ >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WORK
                    128: *> \verbatim
                    129: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] INFO
                    133: *> \verbatim
                    134: *>          INFO is INTEGER
                    135: *>          = 0:  successful exit
                    136: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    137: *>          > 0:  DPPTRF or DSPEV returned an error code:
                    138: *>             <= N:  if INFO = i, DSPEV failed to converge;
                    139: *>                    i off-diagonal elements of an intermediate
                    140: *>                    tridiagonal form did not converge to zero.
                    141: *>             > N:   if INFO = n + i, for 1 <= i <= n, then the leading
                    142: *>                    minor of order i of B is not positive definite.
                    143: *>                    The factorization of B could not be completed and
                    144: *>                    no eigenvalues or eigenvectors were computed.
                    145: *> \endverbatim
                    146: *
                    147: *  Authors:
                    148: *  ========
                    149: *
1.16      bertrand  150: *> \author Univ. of Tennessee
                    151: *> \author Univ. of California Berkeley
                    152: *> \author Univ. of Colorado Denver
                    153: *> \author NAG Ltd.
1.9       bertrand  154: *
1.18    ! bertrand  155: *> \date June 2017
1.9       bertrand  156: *
                    157: *> \ingroup doubleOTHEReigen
                    158: *
                    159: *  =====================================================================
1.1       bertrand  160:       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
                    161:      $                  INFO )
                    162: *
1.18    ! bertrand  163: *  -- LAPACK driver routine (version 3.7.1) --
1.1       bertrand  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.18    ! bertrand  166: *     June 2017
1.1       bertrand  167: *
                    168: *     .. Scalar Arguments ..
                    169:       CHARACTER          JOBZ, UPLO
                    170:       INTEGER            INFO, ITYPE, LDZ, N
                    171: *     ..
                    172: *     .. Array Arguments ..
                    173:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
                    174:      $                   Z( LDZ, * )
                    175: *     ..
                    176: *
                    177: *  =====================================================================
                    178: *
                    179: *     .. Local Scalars ..
                    180:       LOGICAL            UPPER, WANTZ
                    181:       CHARACTER          TRANS
                    182:       INTEGER            J, NEIG
                    183: *     ..
                    184: *     .. External Functions ..
                    185:       LOGICAL            LSAME
                    186:       EXTERNAL           LSAME
                    187: *     ..
                    188: *     .. External Subroutines ..
                    189:       EXTERNAL           DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA
                    190: *     ..
                    191: *     .. Executable Statements ..
                    192: *
                    193: *     Test the input parameters.
                    194: *
                    195:       WANTZ = LSAME( JOBZ, 'V' )
                    196:       UPPER = LSAME( UPLO, 'U' )
                    197: *
                    198:       INFO = 0
                    199:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    200:          INFO = -1
                    201:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    202:          INFO = -2
                    203:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    204:          INFO = -3
                    205:       ELSE IF( N.LT.0 ) THEN
                    206:          INFO = -4
                    207:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    208:          INFO = -9
                    209:       END IF
                    210:       IF( INFO.NE.0 ) THEN
                    211:          CALL XERBLA( 'DSPGV ', -INFO )
                    212:          RETURN
                    213:       END IF
                    214: *
                    215: *     Quick return if possible
                    216: *
                    217:       IF( N.EQ.0 )
                    218:      $   RETURN
                    219: *
                    220: *     Form a Cholesky factorization of B.
                    221: *
                    222:       CALL DPPTRF( UPLO, N, BP, INFO )
                    223:       IF( INFO.NE.0 ) THEN
                    224:          INFO = N + INFO
                    225:          RETURN
                    226:       END IF
                    227: *
                    228: *     Transform problem to standard eigenvalue problem and solve.
                    229: *
                    230:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    231:       CALL DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
                    232: *
                    233:       IF( WANTZ ) THEN
                    234: *
                    235: *        Backtransform eigenvectors to the original problem.
                    236: *
                    237:          NEIG = N
                    238:          IF( INFO.GT.0 )
                    239:      $      NEIG = INFO - 1
                    240:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    241: *
                    242: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  243: *           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
1.1       bertrand  244: *
                    245:             IF( UPPER ) THEN
                    246:                TRANS = 'N'
                    247:             ELSE
                    248:                TRANS = 'T'
                    249:             END IF
                    250: *
                    251:             DO 10 J = 1, NEIG
                    252:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    253:      $                     1 )
                    254:    10       CONTINUE
                    255: *
                    256:          ELSE IF( ITYPE.EQ.3 ) THEN
                    257: *
                    258: *           For B*A*x=(lambda)*x;
1.8       bertrand  259: *           backtransform eigenvectors: x = L*y or U**T*y
1.1       bertrand  260: *
                    261:             IF( UPPER ) THEN
                    262:                TRANS = 'T'
                    263:             ELSE
                    264:                TRANS = 'N'
                    265:             END IF
                    266: *
                    267:             DO 20 J = 1, NEIG
                    268:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    269:      $                     1 )
                    270:    20       CONTINUE
                    271:          END IF
                    272:       END IF
                    273:       RETURN
                    274: *
                    275: *     End of DSPGV
                    276: *
                    277:       END

CVSweb interface <joel.bertrand@systella.fr>