Annotation of rpl/lapack/lapack/dspgv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
        !             2:      $                  INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, ITYPE, LDZ, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   AP( * ), BP( * ), W( * ), WORK( * ),
        !            15:      $                   Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DSPGV computes all the eigenvalues and, optionally, the eigenvectors
        !            22: *  of a real generalized symmetric-definite eigenproblem, of the form
        !            23: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
        !            24: *  Here A and B are assumed to be symmetric, stored in packed format,
        !            25: *  and B is also positive definite.
        !            26: *
        !            27: *  Arguments
        !            28: *  =========
        !            29: *
        !            30: *  ITYPE   (input) INTEGER
        !            31: *          Specifies the problem type to be solved:
        !            32: *          = 1:  A*x = (lambda)*B*x
        !            33: *          = 2:  A*B*x = (lambda)*x
        !            34: *          = 3:  B*A*x = (lambda)*x
        !            35: *
        !            36: *  JOBZ    (input) CHARACTER*1
        !            37: *          = 'N':  Compute eigenvalues only;
        !            38: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            39: *
        !            40: *  UPLO    (input) CHARACTER*1
        !            41: *          = 'U':  Upper triangles of A and B are stored;
        !            42: *          = 'L':  Lower triangles of A and B are stored.
        !            43: *
        !            44: *  N       (input) INTEGER
        !            45: *          The order of the matrices A and B.  N >= 0.
        !            46: *
        !            47: *  AP      (input/output) DOUBLE PRECISION array, dimension
        !            48: *                            (N*(N+1)/2)
        !            49: *          On entry, the upper or lower triangle of the symmetric matrix
        !            50: *          A, packed columnwise in a linear array.  The j-th column of A
        !            51: *          is stored in the array AP as follows:
        !            52: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            53: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            54: *
        !            55: *          On exit, the contents of AP are destroyed.
        !            56: *
        !            57: *  BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            58: *          On entry, the upper or lower triangle of the symmetric matrix
        !            59: *          B, packed columnwise in a linear array.  The j-th column of B
        !            60: *          is stored in the array BP as follows:
        !            61: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
        !            62: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
        !            63: *
        !            64: *          On exit, the triangular factor U or L from the Cholesky
        !            65: *          factorization B = U**T*U or B = L*L**T, in the same storage
        !            66: *          format as B.
        !            67: *
        !            68: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            69: *          If INFO = 0, the eigenvalues in ascending order.
        !            70: *
        !            71: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
        !            72: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !            73: *          eigenvectors.  The eigenvectors are normalized as follows:
        !            74: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
        !            75: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
        !            76: *          If JOBZ = 'N', then Z is not referenced.
        !            77: *
        !            78: *  LDZ     (input) INTEGER
        !            79: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            80: *          JOBZ = 'V', LDZ >= max(1,N).
        !            81: *
        !            82: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !            83: *
        !            84: *  INFO    (output) INTEGER
        !            85: *          = 0:  successful exit
        !            86: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            87: *          > 0:  DPPTRF or DSPEV returned an error code:
        !            88: *             <= N:  if INFO = i, DSPEV failed to converge;
        !            89: *                    i off-diagonal elements of an intermediate
        !            90: *                    tridiagonal form did not converge to zero.
        !            91: *             > N:   if INFO = n + i, for 1 <= i <= n, then the leading
        !            92: *                    minor of order i of B is not positive definite.
        !            93: *                    The factorization of B could not be completed and
        !            94: *                    no eigenvalues or eigenvectors were computed.
        !            95: *
        !            96: *  =====================================================================
        !            97: *
        !            98: *     .. Local Scalars ..
        !            99:       LOGICAL            UPPER, WANTZ
        !           100:       CHARACTER          TRANS
        !           101:       INTEGER            J, NEIG
        !           102: *     ..
        !           103: *     .. External Functions ..
        !           104:       LOGICAL            LSAME
        !           105:       EXTERNAL           LSAME
        !           106: *     ..
        !           107: *     .. External Subroutines ..
        !           108:       EXTERNAL           DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA
        !           109: *     ..
        !           110: *     .. Executable Statements ..
        !           111: *
        !           112: *     Test the input parameters.
        !           113: *
        !           114:       WANTZ = LSAME( JOBZ, 'V' )
        !           115:       UPPER = LSAME( UPLO, 'U' )
        !           116: *
        !           117:       INFO = 0
        !           118:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
        !           119:          INFO = -1
        !           120:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           121:          INFO = -2
        !           122:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           123:          INFO = -3
        !           124:       ELSE IF( N.LT.0 ) THEN
        !           125:          INFO = -4
        !           126:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           127:          INFO = -9
        !           128:       END IF
        !           129:       IF( INFO.NE.0 ) THEN
        !           130:          CALL XERBLA( 'DSPGV ', -INFO )
        !           131:          RETURN
        !           132:       END IF
        !           133: *
        !           134: *     Quick return if possible
        !           135: *
        !           136:       IF( N.EQ.0 )
        !           137:      $   RETURN
        !           138: *
        !           139: *     Form a Cholesky factorization of B.
        !           140: *
        !           141:       CALL DPPTRF( UPLO, N, BP, INFO )
        !           142:       IF( INFO.NE.0 ) THEN
        !           143:          INFO = N + INFO
        !           144:          RETURN
        !           145:       END IF
        !           146: *
        !           147: *     Transform problem to standard eigenvalue problem and solve.
        !           148: *
        !           149:       CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
        !           150:       CALL DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
        !           151: *
        !           152:       IF( WANTZ ) THEN
        !           153: *
        !           154: *        Backtransform eigenvectors to the original problem.
        !           155: *
        !           156:          NEIG = N
        !           157:          IF( INFO.GT.0 )
        !           158:      $      NEIG = INFO - 1
        !           159:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
        !           160: *
        !           161: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
        !           162: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
        !           163: *
        !           164:             IF( UPPER ) THEN
        !           165:                TRANS = 'N'
        !           166:             ELSE
        !           167:                TRANS = 'T'
        !           168:             END IF
        !           169: *
        !           170:             DO 10 J = 1, NEIG
        !           171:                CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
        !           172:      $                     1 )
        !           173:    10       CONTINUE
        !           174: *
        !           175:          ELSE IF( ITYPE.EQ.3 ) THEN
        !           176: *
        !           177: *           For B*A*x=(lambda)*x;
        !           178: *           backtransform eigenvectors: x = L*y or U'*y
        !           179: *
        !           180:             IF( UPPER ) THEN
        !           181:                TRANS = 'T'
        !           182:             ELSE
        !           183:                TRANS = 'N'
        !           184:             END IF
        !           185: *
        !           186:             DO 20 J = 1, NEIG
        !           187:                CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
        !           188:      $                     1 )
        !           189:    20       CONTINUE
        !           190:          END IF
        !           191:       END IF
        !           192:       RETURN
        !           193: *
        !           194: *     End of DSPGV
        !           195: *
        !           196:       END

CVSweb interface <joel.bertrand@systella.fr>