File:  [local] / rpl / lapack / lapack / dspgst.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DSPGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSPGST + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgst.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgst.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgst.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( * ), BP( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSPGST reduces a real symmetric-definite generalized eigenproblem
   38: *> to standard form, using packed storage.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
   45: *>
   46: *> B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
   56: *>          = 2 or 3: compute U*A*U**T or L**T*A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          = 'U':  Upper triangle of A is stored and B is factored as
   63: *>                  U**T*U;
   64: *>          = 'L':  Lower triangle of A is stored and B is factored as
   65: *>                  L*L**T.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] AP
   75: *> \verbatim
   76: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   77: *>          On entry, the upper or lower triangle of the symmetric matrix
   78: *>          A, packed columnwise in a linear array.  The j-th column of A
   79: *>          is stored in the array AP as follows:
   80: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   81: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   82: *>
   83: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   84: *>          same format as A.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] BP
   88: *> \verbatim
   89: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   90: *>          The triangular factor from the Cholesky factorization of B,
   91: *>          stored in the same format as A, as returned by DPPTRF.
   92: *> \endverbatim
   93: *>
   94: *> \param[out] INFO
   95: *> \verbatim
   96: *>          INFO is INTEGER
   97: *>          = 0:  successful exit
   98: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   99: *> \endverbatim
  100: *
  101: *  Authors:
  102: *  ========
  103: *
  104: *> \author Univ. of Tennessee
  105: *> \author Univ. of California Berkeley
  106: *> \author Univ. of Colorado Denver
  107: *> \author NAG Ltd.
  108: *
  109: *> \ingroup doubleOTHERcomputational
  110: *
  111: *  =====================================================================
  112:       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  113: *
  114: *  -- LAPACK computational routine --
  115: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  116: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117: *
  118: *     .. Scalar Arguments ..
  119:       CHARACTER          UPLO
  120:       INTEGER            INFO, ITYPE, N
  121: *     ..
  122: *     .. Array Arguments ..
  123:       DOUBLE PRECISION   AP( * ), BP( * )
  124: *     ..
  125: *
  126: *  =====================================================================
  127: *
  128: *     .. Parameters ..
  129:       DOUBLE PRECISION   ONE, HALF
  130:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
  131: *     ..
  132: *     .. Local Scalars ..
  133:       LOGICAL            UPPER
  134:       INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
  135:       DOUBLE PRECISION   AJJ, AKK, BJJ, BKK, CT
  136: *     ..
  137: *     .. External Subroutines ..
  138:       EXTERNAL           DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
  139:      $                   XERBLA
  140: *     ..
  141: *     .. External Functions ..
  142:       LOGICAL            LSAME
  143:       DOUBLE PRECISION   DDOT
  144:       EXTERNAL           LSAME, DDOT
  145: *     ..
  146: *     .. Executable Statements ..
  147: *
  148: *     Test the input parameters.
  149: *
  150:       INFO = 0
  151:       UPPER = LSAME( UPLO, 'U' )
  152:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  153:          INFO = -1
  154:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  155:          INFO = -2
  156:       ELSE IF( N.LT.0 ) THEN
  157:          INFO = -3
  158:       END IF
  159:       IF( INFO.NE.0 ) THEN
  160:          CALL XERBLA( 'DSPGST', -INFO )
  161:          RETURN
  162:       END IF
  163: *
  164:       IF( ITYPE.EQ.1 ) THEN
  165:          IF( UPPER ) THEN
  166: *
  167: *           Compute inv(U**T)*A*inv(U)
  168: *
  169: *           J1 and JJ are the indices of A(1,j) and A(j,j)
  170: *
  171:             JJ = 0
  172:             DO 10 J = 1, N
  173:                J1 = JJ + 1
  174:                JJ = JJ + J
  175: *
  176: *              Compute the j-th column of the upper triangle of A
  177: *
  178:                BJJ = BP( JJ )
  179:                CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
  180:      $                     AP( J1 ), 1 )
  181:                CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
  182:      $                     AP( J1 ), 1 )
  183:                CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  184:                AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
  185:      $                    1 ) ) / BJJ
  186:    10       CONTINUE
  187:          ELSE
  188: *
  189: *           Compute inv(L)*A*inv(L**T)
  190: *
  191: *           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  192: *
  193:             KK = 1
  194:             DO 20 K = 1, N
  195:                K1K1 = KK + N - K + 1
  196: *
  197: *              Update the lower triangle of A(k:n,k:n)
  198: *
  199:                AKK = AP( KK )
  200:                BKK = BP( KK )
  201:                AKK = AKK / BKK**2
  202:                AP( KK ) = AKK
  203:                IF( K.LT.N ) THEN
  204:                   CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  205:                   CT = -HALF*AKK
  206:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  207:                   CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
  208:      $                        BP( KK+1 ), 1, AP( K1K1 ) )
  209:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  210:                   CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  211:      $                        BP( K1K1 ), AP( KK+1 ), 1 )
  212:                END IF
  213:                KK = K1K1
  214:    20       CONTINUE
  215:          END IF
  216:       ELSE
  217:          IF( UPPER ) THEN
  218: *
  219: *           Compute U*A*U**T
  220: *
  221: *           K1 and KK are the indices of A(1,k) and A(k,k)
  222: *
  223:             KK = 0
  224:             DO 30 K = 1, N
  225:                K1 = KK + 1
  226:                KK = KK + K
  227: *
  228: *              Update the upper triangle of A(1:k,1:k)
  229: *
  230:                AKK = AP( KK )
  231:                BKK = BP( KK )
  232:                CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  233:      $                     AP( K1 ), 1 )
  234:                CT = HALF*AKK
  235:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  236:                CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
  237:      $                     AP )
  238:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  239:                CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
  240:                AP( KK ) = AKK*BKK**2
  241:    30       CONTINUE
  242:          ELSE
  243: *
  244: *           Compute L**T *A*L
  245: *
  246: *           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  247: *
  248:             JJ = 1
  249:             DO 40 J = 1, N
  250:                J1J1 = JJ + N - J + 1
  251: *
  252: *              Compute the j-th column of the lower triangle of A
  253: *
  254:                AJJ = AP( JJ )
  255:                BJJ = BP( JJ )
  256:                AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
  257:      $                    BP( JJ+1 ), 1 )
  258:                CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  259:                CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
  260:      $                     ONE, AP( JJ+1 ), 1 )
  261:                CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
  262:      $                     BP( JJ ), AP( JJ ), 1 )
  263:                JJ = J1J1
  264:    40       CONTINUE
  265:          END IF
  266:       END IF
  267:       RETURN
  268: *
  269: *     End of DSPGST
  270: *
  271:       END

CVSweb interface <joel.bertrand@systella.fr>