File:  [local] / rpl / lapack / lapack / dspgst.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:47 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       CHARACTER          UPLO
   10:       INTEGER            INFO, ITYPE, N
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   AP( * ), BP( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  DSPGST reduces a real symmetric-definite generalized eigenproblem
   20: *  to standard form, using packed storage.
   21: *
   22: *  If ITYPE = 1, the problem is A*x = lambda*B*x,
   23: *  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
   24: *
   25: *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   26: *  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
   27: *
   28: *  B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  ITYPE   (input) INTEGER
   34: *          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
   35: *          = 2 or 3: compute U*A*U**T or L**T*A*L.
   36: *
   37: *  UPLO    (input) CHARACTER*1
   38: *          = 'U':  Upper triangle of A is stored and B is factored as
   39: *                  U**T*U;
   40: *          = 'L':  Lower triangle of A is stored and B is factored as
   41: *                  L*L**T.
   42: *
   43: *  N       (input) INTEGER
   44: *          The order of the matrices A and B.  N >= 0.
   45: *
   46: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   47: *          On entry, the upper or lower triangle of the symmetric matrix
   48: *          A, packed columnwise in a linear array.  The j-th column of A
   49: *          is stored in the array AP as follows:
   50: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   51: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   52: *
   53: *          On exit, if INFO = 0, the transformed matrix, stored in the
   54: *          same format as A.
   55: *
   56: *  BP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   57: *          The triangular factor from the Cholesky factorization of B,
   58: *          stored in the same format as A, as returned by DPPTRF.
   59: *
   60: *  INFO    (output) INTEGER
   61: *          = 0:  successful exit
   62: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   63: *
   64: *  =====================================================================
   65: *
   66: *     .. Parameters ..
   67:       DOUBLE PRECISION   ONE, HALF
   68:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
   69: *     ..
   70: *     .. Local Scalars ..
   71:       LOGICAL            UPPER
   72:       INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
   73:       DOUBLE PRECISION   AJJ, AKK, BJJ, BKK, CT
   74: *     ..
   75: *     .. External Subroutines ..
   76:       EXTERNAL           DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
   77:      $                   XERBLA
   78: *     ..
   79: *     .. External Functions ..
   80:       LOGICAL            LSAME
   81:       DOUBLE PRECISION   DDOT
   82:       EXTERNAL           LSAME, DDOT
   83: *     ..
   84: *     .. Executable Statements ..
   85: *
   86: *     Test the input parameters.
   87: *
   88:       INFO = 0
   89:       UPPER = LSAME( UPLO, 'U' )
   90:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
   91:          INFO = -1
   92:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
   93:          INFO = -2
   94:       ELSE IF( N.LT.0 ) THEN
   95:          INFO = -3
   96:       END IF
   97:       IF( INFO.NE.0 ) THEN
   98:          CALL XERBLA( 'DSPGST', -INFO )
   99:          RETURN
  100:       END IF
  101: *
  102:       IF( ITYPE.EQ.1 ) THEN
  103:          IF( UPPER ) THEN
  104: *
  105: *           Compute inv(U')*A*inv(U)
  106: *
  107: *           J1 and JJ are the indices of A(1,j) and A(j,j)
  108: *
  109:             JJ = 0
  110:             DO 10 J = 1, N
  111:                J1 = JJ + 1
  112:                JJ = JJ + J
  113: *
  114: *              Compute the j-th column of the upper triangle of A
  115: *
  116:                BJJ = BP( JJ )
  117:                CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
  118:      $                     AP( J1 ), 1 )
  119:                CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
  120:      $                     AP( J1 ), 1 )
  121:                CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  122:                AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
  123:      $                    1 ) ) / BJJ
  124:    10       CONTINUE
  125:          ELSE
  126: *
  127: *           Compute inv(L)*A*inv(L')
  128: *
  129: *           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  130: *
  131:             KK = 1
  132:             DO 20 K = 1, N
  133:                K1K1 = KK + N - K + 1
  134: *
  135: *              Update the lower triangle of A(k:n,k:n)
  136: *
  137:                AKK = AP( KK )
  138:                BKK = BP( KK )
  139:                AKK = AKK / BKK**2
  140:                AP( KK ) = AKK
  141:                IF( K.LT.N ) THEN
  142:                   CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  143:                   CT = -HALF*AKK
  144:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  145:                   CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
  146:      $                        BP( KK+1 ), 1, AP( K1K1 ) )
  147:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  148:                   CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  149:      $                        BP( K1K1 ), AP( KK+1 ), 1 )
  150:                END IF
  151:                KK = K1K1
  152:    20       CONTINUE
  153:          END IF
  154:       ELSE
  155:          IF( UPPER ) THEN
  156: *
  157: *           Compute U*A*U'
  158: *
  159: *           K1 and KK are the indices of A(1,k) and A(k,k)
  160: *
  161:             KK = 0
  162:             DO 30 K = 1, N
  163:                K1 = KK + 1
  164:                KK = KK + K
  165: *
  166: *              Update the upper triangle of A(1:k,1:k)
  167: *
  168:                AKK = AP( KK )
  169:                BKK = BP( KK )
  170:                CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  171:      $                     AP( K1 ), 1 )
  172:                CT = HALF*AKK
  173:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  174:                CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
  175:      $                     AP )
  176:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  177:                CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
  178:                AP( KK ) = AKK*BKK**2
  179:    30       CONTINUE
  180:          ELSE
  181: *
  182: *           Compute L'*A*L
  183: *
  184: *           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  185: *
  186:             JJ = 1
  187:             DO 40 J = 1, N
  188:                J1J1 = JJ + N - J + 1
  189: *
  190: *              Compute the j-th column of the lower triangle of A
  191: *
  192:                AJJ = AP( JJ )
  193:                BJJ = BP( JJ )
  194:                AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
  195:      $                    BP( JJ+1 ), 1 )
  196:                CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  197:                CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
  198:      $                     ONE, AP( JJ+1 ), 1 )
  199:                CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
  200:      $                     BP( JJ ), AP( JJ ), 1 )
  201:                JJ = J1J1
  202:    40       CONTINUE
  203:          END IF
  204:       END IF
  205:       RETURN
  206: *
  207: *     End of DSPGST
  208: *
  209:       END

CVSweb interface <joel.bertrand@systella.fr>