File:  [local] / rpl / lapack / lapack / dspgst.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:24 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DSPGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSPGST + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgst.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgst.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgst.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( * ), BP( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSPGST reduces a real symmetric-definite generalized eigenproblem
   38: *> to standard form, using packed storage.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
   45: *>
   46: *> B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
   56: *>          = 2 or 3: compute U*A*U**T or L**T*A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          = 'U':  Upper triangle of A is stored and B is factored as
   63: *>                  U**T*U;
   64: *>          = 'L':  Lower triangle of A is stored and B is factored as
   65: *>                  L*L**T.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] AP
   75: *> \verbatim
   76: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   77: *>          On entry, the upper or lower triangle of the symmetric matrix
   78: *>          A, packed columnwise in a linear array.  The j-th column of A
   79: *>          is stored in the array AP as follows:
   80: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   81: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   82: *>
   83: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   84: *>          same format as A.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] BP
   88: *> \verbatim
   89: *>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   90: *>          The triangular factor from the Cholesky factorization of B,
   91: *>          stored in the same format as A, as returned by DPPTRF.
   92: *> \endverbatim
   93: *>
   94: *> \param[out] INFO
   95: *> \verbatim
   96: *>          INFO is INTEGER
   97: *>          = 0:  successful exit
   98: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   99: *> \endverbatim
  100: *
  101: *  Authors:
  102: *  ========
  103: *
  104: *> \author Univ. of Tennessee 
  105: *> \author Univ. of California Berkeley 
  106: *> \author Univ. of Colorado Denver 
  107: *> \author NAG Ltd. 
  108: *
  109: *> \date November 2011
  110: *
  111: *> \ingroup doubleOTHERcomputational
  112: *
  113: *  =====================================================================
  114:       SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
  115: *
  116: *  -- LAPACK computational routine (version 3.4.0) --
  117: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  118: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119: *     November 2011
  120: *
  121: *     .. Scalar Arguments ..
  122:       CHARACTER          UPLO
  123:       INTEGER            INFO, ITYPE, N
  124: *     ..
  125: *     .. Array Arguments ..
  126:       DOUBLE PRECISION   AP( * ), BP( * )
  127: *     ..
  128: *
  129: *  =====================================================================
  130: *
  131: *     .. Parameters ..
  132:       DOUBLE PRECISION   ONE, HALF
  133:       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D0 )
  134: *     ..
  135: *     .. Local Scalars ..
  136:       LOGICAL            UPPER
  137:       INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
  138:       DOUBLE PRECISION   AJJ, AKK, BJJ, BKK, CT
  139: *     ..
  140: *     .. External Subroutines ..
  141:       EXTERNAL           DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
  142:      $                   XERBLA
  143: *     ..
  144: *     .. External Functions ..
  145:       LOGICAL            LSAME
  146:       DOUBLE PRECISION   DDOT
  147:       EXTERNAL           LSAME, DDOT
  148: *     ..
  149: *     .. Executable Statements ..
  150: *
  151: *     Test the input parameters.
  152: *
  153:       INFO = 0
  154:       UPPER = LSAME( UPLO, 'U' )
  155:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  156:          INFO = -1
  157:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158:          INFO = -2
  159:       ELSE IF( N.LT.0 ) THEN
  160:          INFO = -3
  161:       END IF
  162:       IF( INFO.NE.0 ) THEN
  163:          CALL XERBLA( 'DSPGST', -INFO )
  164:          RETURN
  165:       END IF
  166: *
  167:       IF( ITYPE.EQ.1 ) THEN
  168:          IF( UPPER ) THEN
  169: *
  170: *           Compute inv(U**T)*A*inv(U)
  171: *
  172: *           J1 and JJ are the indices of A(1,j) and A(j,j)
  173: *
  174:             JJ = 0
  175:             DO 10 J = 1, N
  176:                J1 = JJ + 1
  177:                JJ = JJ + J
  178: *
  179: *              Compute the j-th column of the upper triangle of A
  180: *
  181:                BJJ = BP( JJ )
  182:                CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
  183:      $                     AP( J1 ), 1 )
  184:                CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
  185:      $                     AP( J1 ), 1 )
  186:                CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
  187:                AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
  188:      $                    1 ) ) / BJJ
  189:    10       CONTINUE
  190:          ELSE
  191: *
  192: *           Compute inv(L)*A*inv(L**T)
  193: *
  194: *           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
  195: *
  196:             KK = 1
  197:             DO 20 K = 1, N
  198:                K1K1 = KK + N - K + 1
  199: *
  200: *              Update the lower triangle of A(k:n,k:n)
  201: *
  202:                AKK = AP( KK )
  203:                BKK = BP( KK )
  204:                AKK = AKK / BKK**2
  205:                AP( KK ) = AKK
  206:                IF( K.LT.N ) THEN
  207:                   CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
  208:                   CT = -HALF*AKK
  209:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  210:                   CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
  211:      $                        BP( KK+1 ), 1, AP( K1K1 ) )
  212:                   CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
  213:                   CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
  214:      $                        BP( K1K1 ), AP( KK+1 ), 1 )
  215:                END IF
  216:                KK = K1K1
  217:    20       CONTINUE
  218:          END IF
  219:       ELSE
  220:          IF( UPPER ) THEN
  221: *
  222: *           Compute U*A*U**T
  223: *
  224: *           K1 and KK are the indices of A(1,k) and A(k,k)
  225: *
  226:             KK = 0
  227:             DO 30 K = 1, N
  228:                K1 = KK + 1
  229:                KK = KK + K
  230: *
  231: *              Update the upper triangle of A(1:k,1:k)
  232: *
  233:                AKK = AP( KK )
  234:                BKK = BP( KK )
  235:                CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
  236:      $                     AP( K1 ), 1 )
  237:                CT = HALF*AKK
  238:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  239:                CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
  240:      $                     AP )
  241:                CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
  242:                CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
  243:                AP( KK ) = AKK*BKK**2
  244:    30       CONTINUE
  245:          ELSE
  246: *
  247: *           Compute L**T *A*L
  248: *
  249: *           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
  250: *
  251:             JJ = 1
  252:             DO 40 J = 1, N
  253:                J1J1 = JJ + N - J + 1
  254: *
  255: *              Compute the j-th column of the lower triangle of A
  256: *
  257:                AJJ = AP( JJ )
  258:                BJJ = BP( JJ )
  259:                AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
  260:      $                    BP( JJ+1 ), 1 )
  261:                CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
  262:                CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
  263:      $                     ONE, AP( JJ+1 ), 1 )
  264:                CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
  265:      $                     BP( JJ ), AP( JJ ), 1 )
  266:                JJ = J1J1
  267:    40       CONTINUE
  268:          END IF
  269:       END IF
  270:       RETURN
  271: *
  272: *     End of DSPGST
  273: *
  274:       END

CVSweb interface <joel.bertrand@systella.fr>