File:  [local] / rpl / lapack / lapack / dspevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:06 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DSPEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDZ, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> DSPEVX computes selected eigenvalues and, optionally, eigenvectors
   42: *> of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
   43: *> can be selected by specifying either a range of values or a range of
   44: *> indices for the desired eigenvalues.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] JOBZ
   51: *> \verbatim
   52: *>          JOBZ is CHARACTER*1
   53: *>          = 'N':  Compute eigenvalues only;
   54: *>          = 'V':  Compute eigenvalues and eigenvectors.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] RANGE
   58: *> \verbatim
   59: *>          RANGE is CHARACTER*1
   60: *>          = 'A': all eigenvalues will be found;
   61: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   62: *>                 will be found;
   63: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] UPLO
   67: *> \verbatim
   68: *>          UPLO is CHARACTER*1
   69: *>          = 'U':  Upper triangle of A is stored;
   70: *>          = 'L':  Lower triangle of A is stored.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] N
   74: *> \verbatim
   75: *>          N is INTEGER
   76: *>          The order of the matrix A.  N >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] AP
   80: *> \verbatim
   81: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   82: *>          On entry, the upper or lower triangle of the symmetric matrix
   83: *>          A, packed columnwise in a linear array.  The j-th column of A
   84: *>          is stored in the array AP as follows:
   85: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   86: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   87: *>
   88: *>          On exit, AP is overwritten by values generated during the
   89: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   90: *>          and first superdiagonal of the tridiagonal matrix T overwrite
   91: *>          the corresponding elements of A, and if UPLO = 'L', the
   92: *>          diagonal and first subdiagonal of T overwrite the
   93: *>          corresponding elements of A.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] VL
   97: *> \verbatim
   98: *>          VL is DOUBLE PRECISION
   99: *>          If RANGE='V', the lower bound of the interval to
  100: *>          be searched for eigenvalues. VL < VU.
  101: *>          Not referenced if RANGE = 'A' or 'I'.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] VU
  105: *> \verbatim
  106: *>          VU is DOUBLE PRECISION
  107: *>          If RANGE='V', the upper bound of the interval to
  108: *>          be searched for eigenvalues. VL < VU.
  109: *>          Not referenced if RANGE = 'A' or 'I'.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] IL
  113: *> \verbatim
  114: *>          IL is INTEGER
  115: *>          If RANGE='I', the index of the
  116: *>          smallest eigenvalue to be returned.
  117: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  118: *>          Not referenced if RANGE = 'A' or 'V'.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] IU
  122: *> \verbatim
  123: *>          IU is INTEGER
  124: *>          If RANGE='I', the index of the
  125: *>          largest eigenvalue to be returned.
  126: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  127: *>          Not referenced if RANGE = 'A' or 'V'.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] ABSTOL
  131: *> \verbatim
  132: *>          ABSTOL is DOUBLE PRECISION
  133: *>          The absolute error tolerance for the eigenvalues.
  134: *>          An approximate eigenvalue is accepted as converged
  135: *>          when it is determined to lie in an interval [a,b]
  136: *>          of width less than or equal to
  137: *>
  138: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  139: *>
  140: *>          where EPS is the machine precision.  If ABSTOL is less than
  141: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  142: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  143: *>          by reducing AP to tridiagonal form.
  144: *>
  145: *>          Eigenvalues will be computed most accurately when ABSTOL is
  146: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  147: *>          If this routine returns with INFO>0, indicating that some
  148: *>          eigenvectors did not converge, try setting ABSTOL to
  149: *>          2*DLAMCH('S').
  150: *>
  151: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  152: *>          with Guaranteed High Relative Accuracy," by Demmel and
  153: *>          Kahan, LAPACK Working Note #3.
  154: *> \endverbatim
  155: *>
  156: *> \param[out] M
  157: *> \verbatim
  158: *>          M is INTEGER
  159: *>          The total number of eigenvalues found.  0 <= M <= N.
  160: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] W
  164: *> \verbatim
  165: *>          W is DOUBLE PRECISION array, dimension (N)
  166: *>          If INFO = 0, the selected eigenvalues in ascending order.
  167: *> \endverbatim
  168: *>
  169: *> \param[out] Z
  170: *> \verbatim
  171: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  172: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  173: *>          contain the orthonormal eigenvectors of the matrix A
  174: *>          corresponding to the selected eigenvalues, with the i-th
  175: *>          column of Z holding the eigenvector associated with W(i).
  176: *>          If an eigenvector fails to converge, then that column of Z
  177: *>          contains the latest approximation to the eigenvector, and the
  178: *>          index of the eigenvector is returned in IFAIL.
  179: *>          If JOBZ = 'N', then Z is not referenced.
  180: *>          Note: the user must ensure that at least max(1,M) columns are
  181: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  182: *>          is not known in advance and an upper bound must be used.
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDZ
  186: *> \verbatim
  187: *>          LDZ is INTEGER
  188: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  189: *>          JOBZ = 'V', LDZ >= max(1,N).
  190: *> \endverbatim
  191: *>
  192: *> \param[out] WORK
  193: *> \verbatim
  194: *>          WORK is DOUBLE PRECISION array, dimension (8*N)
  195: *> \endverbatim
  196: *>
  197: *> \param[out] IWORK
  198: *> \verbatim
  199: *>          IWORK is INTEGER array, dimension (5*N)
  200: *> \endverbatim
  201: *>
  202: *> \param[out] IFAIL
  203: *> \verbatim
  204: *>          IFAIL is INTEGER array, dimension (N)
  205: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  206: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  207: *>          indices of the eigenvectors that failed to converge.
  208: *>          If JOBZ = 'N', then IFAIL is not referenced.
  209: *> \endverbatim
  210: *>
  211: *> \param[out] INFO
  212: *> \verbatim
  213: *>          INFO is INTEGER
  214: *>          = 0:  successful exit
  215: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  216: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  217: *>                Their indices are stored in array IFAIL.
  218: *> \endverbatim
  219: *
  220: *  Authors:
  221: *  ========
  222: *
  223: *> \author Univ. of Tennessee
  224: *> \author Univ. of California Berkeley
  225: *> \author Univ. of Colorado Denver
  226: *> \author NAG Ltd.
  227: *
  228: *> \ingroup doubleOTHEReigen
  229: *
  230: *  =====================================================================
  231:       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
  232:      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
  233:      $                   INFO )
  234: *
  235: *  -- LAPACK driver routine --
  236: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  237: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  238: *
  239: *     .. Scalar Arguments ..
  240:       CHARACTER          JOBZ, RANGE, UPLO
  241:       INTEGER            IL, INFO, IU, LDZ, M, N
  242:       DOUBLE PRECISION   ABSTOL, VL, VU
  243: *     ..
  244: *     .. Array Arguments ..
  245:       INTEGER            IFAIL( * ), IWORK( * )
  246:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
  247: *     ..
  248: *
  249: *  =====================================================================
  250: *
  251: *     .. Parameters ..
  252:       DOUBLE PRECISION   ZERO, ONE
  253:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  254: *     ..
  255: *     .. Local Scalars ..
  256:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  257:       CHARACTER          ORDER
  258:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  259:      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
  260:      $                   J, JJ, NSPLIT
  261:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  262:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  263: *     ..
  264: *     .. External Functions ..
  265:       LOGICAL            LSAME
  266:       DOUBLE PRECISION   DLAMCH, DLANSP
  267:       EXTERNAL           LSAME, DLAMCH, DLANSP
  268: *     ..
  269: *     .. External Subroutines ..
  270:       EXTERNAL           DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
  271:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  272: *     ..
  273: *     .. Intrinsic Functions ..
  274:       INTRINSIC          MAX, MIN, SQRT
  275: *     ..
  276: *     .. Executable Statements ..
  277: *
  278: *     Test the input parameters.
  279: *
  280:       WANTZ = LSAME( JOBZ, 'V' )
  281:       ALLEIG = LSAME( RANGE, 'A' )
  282:       VALEIG = LSAME( RANGE, 'V' )
  283:       INDEIG = LSAME( RANGE, 'I' )
  284: *
  285:       INFO = 0
  286:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  287:          INFO = -1
  288:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  289:          INFO = -2
  290:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  291:      $          THEN
  292:          INFO = -3
  293:       ELSE IF( N.LT.0 ) THEN
  294:          INFO = -4
  295:       ELSE
  296:          IF( VALEIG ) THEN
  297:             IF( N.GT.0 .AND. VU.LE.VL )
  298:      $         INFO = -7
  299:          ELSE IF( INDEIG ) THEN
  300:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  301:                INFO = -8
  302:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  303:                INFO = -9
  304:             END IF
  305:          END IF
  306:       END IF
  307:       IF( INFO.EQ.0 ) THEN
  308:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  309:      $      INFO = -14
  310:       END IF
  311: *
  312:       IF( INFO.NE.0 ) THEN
  313:          CALL XERBLA( 'DSPEVX', -INFO )
  314:          RETURN
  315:       END IF
  316: *
  317: *     Quick return if possible
  318: *
  319:       M = 0
  320:       IF( N.EQ.0 )
  321:      $   RETURN
  322: *
  323:       IF( N.EQ.1 ) THEN
  324:          IF( ALLEIG .OR. INDEIG ) THEN
  325:             M = 1
  326:             W( 1 ) = AP( 1 )
  327:          ELSE
  328:             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
  329:                M = 1
  330:                W( 1 ) = AP( 1 )
  331:             END IF
  332:          END IF
  333:          IF( WANTZ )
  334:      $      Z( 1, 1 ) = ONE
  335:          RETURN
  336:       END IF
  337: *
  338: *     Get machine constants.
  339: *
  340:       SAFMIN = DLAMCH( 'Safe minimum' )
  341:       EPS = DLAMCH( 'Precision' )
  342:       SMLNUM = SAFMIN / EPS
  343:       BIGNUM = ONE / SMLNUM
  344:       RMIN = SQRT( SMLNUM )
  345:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  346: *
  347: *     Scale matrix to allowable range, if necessary.
  348: *
  349:       ISCALE = 0
  350:       ABSTLL = ABSTOL
  351:       IF( VALEIG ) THEN
  352:          VLL = VL
  353:          VUU = VU
  354:       ELSE
  355:          VLL = ZERO
  356:          VUU = ZERO
  357:       END IF
  358:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
  359:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  360:          ISCALE = 1
  361:          SIGMA = RMIN / ANRM
  362:       ELSE IF( ANRM.GT.RMAX ) THEN
  363:          ISCALE = 1
  364:          SIGMA = RMAX / ANRM
  365:       END IF
  366:       IF( ISCALE.EQ.1 ) THEN
  367:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  368:          IF( ABSTOL.GT.0 )
  369:      $      ABSTLL = ABSTOL*SIGMA
  370:          IF( VALEIG ) THEN
  371:             VLL = VL*SIGMA
  372:             VUU = VU*SIGMA
  373:          END IF
  374:       END IF
  375: *
  376: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
  377: *
  378:       INDTAU = 1
  379:       INDE = INDTAU + N
  380:       INDD = INDE + N
  381:       INDWRK = INDD + N
  382:       CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
  383:      $             WORK( INDTAU ), IINFO )
  384: *
  385: *     If all eigenvalues are desired and ABSTOL is less than or equal
  386: *     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails
  387: *     for some eigenvalue, then try DSTEBZ.
  388: *
  389:       TEST = .FALSE.
  390:       IF (INDEIG) THEN
  391:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  392:             TEST = .TRUE.
  393:          END IF
  394:       END IF
  395:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  396:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  397:          INDEE = INDWRK + 2*N
  398:          IF( .NOT.WANTZ ) THEN
  399:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  400:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  401:          ELSE
  402:             CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  403:      $                   WORK( INDWRK ), IINFO )
  404:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  405:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  406:      $                   WORK( INDWRK ), INFO )
  407:             IF( INFO.EQ.0 ) THEN
  408:                DO 10 I = 1, N
  409:                   IFAIL( I ) = 0
  410:    10          CONTINUE
  411:             END IF
  412:          END IF
  413:          IF( INFO.EQ.0 ) THEN
  414:             M = N
  415:             GO TO 20
  416:          END IF
  417:          INFO = 0
  418:       END IF
  419: *
  420: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  421: *
  422:       IF( WANTZ ) THEN
  423:          ORDER = 'B'
  424:       ELSE
  425:          ORDER = 'E'
  426:       END IF
  427:       INDIBL = 1
  428:       INDISP = INDIBL + N
  429:       INDIWO = INDISP + N
  430:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  431:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  432:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  433:      $             IWORK( INDIWO ), INFO )
  434: *
  435:       IF( WANTZ ) THEN
  436:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  437:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  438:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  439: *
  440: *        Apply orthogonal matrix used in reduction to tridiagonal
  441: *        form to eigenvectors returned by DSTEIN.
  442: *
  443:          CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  444:      $                WORK( INDWRK ), IINFO )
  445:       END IF
  446: *
  447: *     If matrix was scaled, then rescale eigenvalues appropriately.
  448: *
  449:    20 CONTINUE
  450:       IF( ISCALE.EQ.1 ) THEN
  451:          IF( INFO.EQ.0 ) THEN
  452:             IMAX = M
  453:          ELSE
  454:             IMAX = INFO - 1
  455:          END IF
  456:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  457:       END IF
  458: *
  459: *     If eigenvalues are not in order, then sort them, along with
  460: *     eigenvectors.
  461: *
  462:       IF( WANTZ ) THEN
  463:          DO 40 J = 1, M - 1
  464:             I = 0
  465:             TMP1 = W( J )
  466:             DO 30 JJ = J + 1, M
  467:                IF( W( JJ ).LT.TMP1 ) THEN
  468:                   I = JJ
  469:                   TMP1 = W( JJ )
  470:                END IF
  471:    30       CONTINUE
  472: *
  473:             IF( I.NE.0 ) THEN
  474:                ITMP1 = IWORK( INDIBL+I-1 )
  475:                W( I ) = W( J )
  476:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  477:                W( J ) = TMP1
  478:                IWORK( INDIBL+J-1 ) = ITMP1
  479:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  480:                IF( INFO.NE.0 ) THEN
  481:                   ITMP1 = IFAIL( I )
  482:                   IFAIL( I ) = IFAIL( J )
  483:                   IFAIL( J ) = ITMP1
  484:                END IF
  485:             END IF
  486:    40    CONTINUE
  487:       END IF
  488: *
  489:       RETURN
  490: *
  491: *     End of DSPEVX
  492: *
  493:       END

CVSweb interface <joel.bertrand@systella.fr>