File:  [local] / rpl / lapack / lapack / dspevx.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:34 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  DSPEVX computes selected eigenvalues and, optionally, eigenvectors
   24: *  of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
   25: *  can be selected by specifying either a range of values or a range of
   26: *  indices for the desired eigenvalues.
   27: *
   28: *  Arguments
   29: *  =========
   30: *
   31: *  JOBZ    (input) CHARACTER*1
   32: *          = 'N':  Compute eigenvalues only;
   33: *          = 'V':  Compute eigenvalues and eigenvectors.
   34: *
   35: *  RANGE   (input) CHARACTER*1
   36: *          = 'A': all eigenvalues will be found;
   37: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   38: *                 will be found;
   39: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   40: *
   41: *  UPLO    (input) CHARACTER*1
   42: *          = 'U':  Upper triangle of A is stored;
   43: *          = 'L':  Lower triangle of A is stored.
   44: *
   45: *  N       (input) INTEGER
   46: *          The order of the matrix A.  N >= 0.
   47: *
   48: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   49: *          On entry, the upper or lower triangle of the symmetric matrix
   50: *          A, packed columnwise in a linear array.  The j-th column of A
   51: *          is stored in the array AP as follows:
   52: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   53: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   54: *
   55: *          On exit, AP is overwritten by values generated during the
   56: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   57: *          and first superdiagonal of the tridiagonal matrix T overwrite
   58: *          the corresponding elements of A, and if UPLO = 'L', the
   59: *          diagonal and first subdiagonal of T overwrite the
   60: *          corresponding elements of A.
   61: *
   62: *  VL      (input) DOUBLE PRECISION
   63: *  VU      (input) DOUBLE PRECISION
   64: *          If RANGE='V', the lower and upper bounds of the interval to
   65: *          be searched for eigenvalues. VL < VU.
   66: *          Not referenced if RANGE = 'A' or 'I'.
   67: *
   68: *  IL      (input) INTEGER
   69: *  IU      (input) INTEGER
   70: *          If RANGE='I', the indices (in ascending order) of the
   71: *          smallest and largest eigenvalues to be returned.
   72: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   73: *          Not referenced if RANGE = 'A' or 'V'.
   74: *
   75: *  ABSTOL  (input) DOUBLE PRECISION
   76: *          The absolute error tolerance for the eigenvalues.
   77: *          An approximate eigenvalue is accepted as converged
   78: *          when it is determined to lie in an interval [a,b]
   79: *          of width less than or equal to
   80: *
   81: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   82: *
   83: *          where EPS is the machine precision.  If ABSTOL is less than
   84: *          or equal to zero, then  EPS*|T|  will be used in its place,
   85: *          where |T| is the 1-norm of the tridiagonal matrix obtained
   86: *          by reducing AP to tridiagonal form.
   87: *
   88: *          Eigenvalues will be computed most accurately when ABSTOL is
   89: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
   90: *          If this routine returns with INFO>0, indicating that some
   91: *          eigenvectors did not converge, try setting ABSTOL to
   92: *          2*DLAMCH('S').
   93: *
   94: *          See "Computing Small Singular Values of Bidiagonal Matrices
   95: *          with Guaranteed High Relative Accuracy," by Demmel and
   96: *          Kahan, LAPACK Working Note #3.
   97: *
   98: *  M       (output) INTEGER
   99: *          The total number of eigenvalues found.  0 <= M <= N.
  100: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  101: *
  102: *  W       (output) DOUBLE PRECISION array, dimension (N)
  103: *          If INFO = 0, the selected eigenvalues in ascending order.
  104: *
  105: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
  106: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  107: *          contain the orthonormal eigenvectors of the matrix A
  108: *          corresponding to the selected eigenvalues, with the i-th
  109: *          column of Z holding the eigenvector associated with W(i).
  110: *          If an eigenvector fails to converge, then that column of Z
  111: *          contains the latest approximation to the eigenvector, and the
  112: *          index of the eigenvector is returned in IFAIL.
  113: *          If JOBZ = 'N', then Z is not referenced.
  114: *          Note: the user must ensure that at least max(1,M) columns are
  115: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  116: *          is not known in advance and an upper bound must be used.
  117: *
  118: *  LDZ     (input) INTEGER
  119: *          The leading dimension of the array Z.  LDZ >= 1, and if
  120: *          JOBZ = 'V', LDZ >= max(1,N).
  121: *
  122: *  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N)
  123: *
  124: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  125: *
  126: *  IFAIL   (output) INTEGER array, dimension (N)
  127: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  128: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  129: *          indices of the eigenvectors that failed to converge.
  130: *          If JOBZ = 'N', then IFAIL is not referenced.
  131: *
  132: *  INFO    (output) INTEGER
  133: *          = 0:  successful exit
  134: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  135: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  136: *                Their indices are stored in array IFAIL.
  137: *
  138: *  =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       DOUBLE PRECISION   ZERO, ONE
  142:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  143: *     ..
  144: *     .. Local Scalars ..
  145:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
  146:       CHARACTER          ORDER
  147:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  148:      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
  149:      $                   J, JJ, NSPLIT
  150:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  151:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  152: *     ..
  153: *     .. External Functions ..
  154:       LOGICAL            LSAME
  155:       DOUBLE PRECISION   DLAMCH, DLANSP
  156:       EXTERNAL           LSAME, DLAMCH, DLANSP
  157: *     ..
  158: *     .. External Subroutines ..
  159:       EXTERNAL           DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
  160:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          MAX, MIN, SQRT
  164: *     ..
  165: *     .. Executable Statements ..
  166: *
  167: *     Test the input parameters.
  168: *
  169:       WANTZ = LSAME( JOBZ, 'V' )
  170:       ALLEIG = LSAME( RANGE, 'A' )
  171:       VALEIG = LSAME( RANGE, 'V' )
  172:       INDEIG = LSAME( RANGE, 'I' )
  173: *
  174:       INFO = 0
  175:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  176:          INFO = -1
  177:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  178:          INFO = -2
  179:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
  180:      $          THEN
  181:          INFO = -3
  182:       ELSE IF( N.LT.0 ) THEN
  183:          INFO = -4
  184:       ELSE
  185:          IF( VALEIG ) THEN
  186:             IF( N.GT.0 .AND. VU.LE.VL )
  187:      $         INFO = -7
  188:          ELSE IF( INDEIG ) THEN
  189:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  190:                INFO = -8
  191:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  192:                INFO = -9
  193:             END IF
  194:          END IF
  195:       END IF
  196:       IF( INFO.EQ.0 ) THEN
  197:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  198:      $      INFO = -14
  199:       END IF
  200: *
  201:       IF( INFO.NE.0 ) THEN
  202:          CALL XERBLA( 'DSPEVX', -INFO )
  203:          RETURN
  204:       END IF
  205: *
  206: *     Quick return if possible
  207: *
  208:       M = 0
  209:       IF( N.EQ.0 )
  210:      $   RETURN
  211: *
  212:       IF( N.EQ.1 ) THEN
  213:          IF( ALLEIG .OR. INDEIG ) THEN
  214:             M = 1
  215:             W( 1 ) = AP( 1 )
  216:          ELSE
  217:             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
  218:                M = 1
  219:                W( 1 ) = AP( 1 )
  220:             END IF
  221:          END IF
  222:          IF( WANTZ )
  223:      $      Z( 1, 1 ) = ONE
  224:          RETURN
  225:       END IF
  226: *
  227: *     Get machine constants.
  228: *
  229:       SAFMIN = DLAMCH( 'Safe minimum' )
  230:       EPS = DLAMCH( 'Precision' )
  231:       SMLNUM = SAFMIN / EPS
  232:       BIGNUM = ONE / SMLNUM
  233:       RMIN = SQRT( SMLNUM )
  234:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  235: *
  236: *     Scale matrix to allowable range, if necessary.
  237: *
  238:       ISCALE = 0
  239:       ABSTLL = ABSTOL
  240:       IF( VALEIG ) THEN
  241:          VLL = VL
  242:          VUU = VU
  243:       ELSE
  244:          VLL = ZERO
  245:          VUU = ZERO
  246:       END IF
  247:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
  248:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  249:          ISCALE = 1
  250:          SIGMA = RMIN / ANRM
  251:       ELSE IF( ANRM.GT.RMAX ) THEN
  252:          ISCALE = 1
  253:          SIGMA = RMAX / ANRM
  254:       END IF
  255:       IF( ISCALE.EQ.1 ) THEN
  256:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  257:          IF( ABSTOL.GT.0 )
  258:      $      ABSTLL = ABSTOL*SIGMA
  259:          IF( VALEIG ) THEN
  260:             VLL = VL*SIGMA
  261:             VUU = VU*SIGMA
  262:          END IF
  263:       END IF
  264: *
  265: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
  266: *
  267:       INDTAU = 1
  268:       INDE = INDTAU + N
  269:       INDD = INDE + N
  270:       INDWRK = INDD + N
  271:       CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
  272:      $             WORK( INDTAU ), IINFO )
  273: *
  274: *     If all eigenvalues are desired and ABSTOL is less than or equal
  275: *     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails
  276: *     for some eigenvalue, then try DSTEBZ.
  277: *
  278:       TEST = .FALSE.
  279:       IF (INDEIG) THEN
  280:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  281:             TEST = .TRUE.
  282:          END IF
  283:       END IF
  284:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  285:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  286:          INDEE = INDWRK + 2*N
  287:          IF( .NOT.WANTZ ) THEN
  288:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  289:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  290:          ELSE
  291:             CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  292:      $                   WORK( INDWRK ), IINFO )
  293:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  294:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  295:      $                   WORK( INDWRK ), INFO )
  296:             IF( INFO.EQ.0 ) THEN
  297:                DO 10 I = 1, N
  298:                   IFAIL( I ) = 0
  299:    10          CONTINUE
  300:             END IF
  301:          END IF
  302:          IF( INFO.EQ.0 ) THEN
  303:             M = N
  304:             GO TO 20
  305:          END IF
  306:          INFO = 0
  307:       END IF
  308: *
  309: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
  310: *
  311:       IF( WANTZ ) THEN
  312:          ORDER = 'B'
  313:       ELSE
  314:          ORDER = 'E'
  315:       END IF
  316:       INDIBL = 1
  317:       INDISP = INDIBL + N
  318:       INDIWO = INDISP + N
  319:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  320:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  321:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  322:      $             IWORK( INDIWO ), INFO )
  323: *
  324:       IF( WANTZ ) THEN
  325:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  326:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  327:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  328: *
  329: *        Apply orthogonal matrix used in reduction to tridiagonal
  330: *        form to eigenvectors returned by DSTEIN.
  331: *
  332:          CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
  333:      $                WORK( INDWRK ), IINFO )
  334:       END IF
  335: *
  336: *     If matrix was scaled, then rescale eigenvalues appropriately.
  337: *
  338:    20 CONTINUE
  339:       IF( ISCALE.EQ.1 ) THEN
  340:          IF( INFO.EQ.0 ) THEN
  341:             IMAX = M
  342:          ELSE
  343:             IMAX = INFO - 1
  344:          END IF
  345:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  346:       END IF
  347: *
  348: *     If eigenvalues are not in order, then sort them, along with
  349: *     eigenvectors.
  350: *
  351:       IF( WANTZ ) THEN
  352:          DO 40 J = 1, M - 1
  353:             I = 0
  354:             TMP1 = W( J )
  355:             DO 30 JJ = J + 1, M
  356:                IF( W( JJ ).LT.TMP1 ) THEN
  357:                   I = JJ
  358:                   TMP1 = W( JJ )
  359:                END IF
  360:    30       CONTINUE
  361: *
  362:             IF( I.NE.0 ) THEN
  363:                ITMP1 = IWORK( INDIBL+I-1 )
  364:                W( I ) = W( J )
  365:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  366:                W( J ) = TMP1
  367:                IWORK( INDIBL+J-1 ) = ITMP1
  368:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  369:                IF( INFO.NE.0 ) THEN
  370:                   ITMP1 = IFAIL( I )
  371:                   IFAIL( I ) = IFAIL( J )
  372:                   IFAIL( J ) = ITMP1
  373:                END IF
  374:             END IF
  375:    40    CONTINUE
  376:       END IF
  377: *
  378:       RETURN
  379: *
  380: *     End of DSPEVX
  381: *
  382:       END

CVSweb interface <joel.bertrand@systella.fr>