Annotation of rpl/lapack/lapack/dspevx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
                      3:      $                   INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDZ, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DSPEVX computes selected eigenvalues and, optionally, eigenvectors
                     24: *  of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
                     25: *  can be selected by specifying either a range of values or a range of
                     26: *  indices for the desired eigenvalues.
                     27: *
                     28: *  Arguments
                     29: *  =========
                     30: *
                     31: *  JOBZ    (input) CHARACTER*1
                     32: *          = 'N':  Compute eigenvalues only;
                     33: *          = 'V':  Compute eigenvalues and eigenvectors.
                     34: *
                     35: *  RANGE   (input) CHARACTER*1
                     36: *          = 'A': all eigenvalues will be found;
                     37: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     38: *                 will be found;
                     39: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     40: *
                     41: *  UPLO    (input) CHARACTER*1
                     42: *          = 'U':  Upper triangle of A is stored;
                     43: *          = 'L':  Lower triangle of A is stored.
                     44: *
                     45: *  N       (input) INTEGER
                     46: *          The order of the matrix A.  N >= 0.
                     47: *
                     48: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     49: *          On entry, the upper or lower triangle of the symmetric matrix
                     50: *          A, packed columnwise in a linear array.  The j-th column of A
                     51: *          is stored in the array AP as follows:
                     52: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     53: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     54: *
                     55: *          On exit, AP is overwritten by values generated during the
                     56: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     57: *          and first superdiagonal of the tridiagonal matrix T overwrite
                     58: *          the corresponding elements of A, and if UPLO = 'L', the
                     59: *          diagonal and first subdiagonal of T overwrite the
                     60: *          corresponding elements of A.
                     61: *
                     62: *  VL      (input) DOUBLE PRECISION
                     63: *  VU      (input) DOUBLE PRECISION
                     64: *          If RANGE='V', the lower and upper bounds of the interval to
                     65: *          be searched for eigenvalues. VL < VU.
                     66: *          Not referenced if RANGE = 'A' or 'I'.
                     67: *
                     68: *  IL      (input) INTEGER
                     69: *  IU      (input) INTEGER
                     70: *          If RANGE='I', the indices (in ascending order) of the
                     71: *          smallest and largest eigenvalues to be returned.
                     72: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     73: *          Not referenced if RANGE = 'A' or 'V'.
                     74: *
                     75: *  ABSTOL  (input) DOUBLE PRECISION
                     76: *          The absolute error tolerance for the eigenvalues.
                     77: *          An approximate eigenvalue is accepted as converged
                     78: *          when it is determined to lie in an interval [a,b]
                     79: *          of width less than or equal to
                     80: *
                     81: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     82: *
                     83: *          where EPS is the machine precision.  If ABSTOL is less than
                     84: *          or equal to zero, then  EPS*|T|  will be used in its place,
                     85: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                     86: *          by reducing AP to tridiagonal form.
                     87: *
                     88: *          Eigenvalues will be computed most accurately when ABSTOL is
                     89: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     90: *          If this routine returns with INFO>0, indicating that some
                     91: *          eigenvectors did not converge, try setting ABSTOL to
                     92: *          2*DLAMCH('S').
                     93: *
                     94: *          See "Computing Small Singular Values of Bidiagonal Matrices
                     95: *          with Guaranteed High Relative Accuracy," by Demmel and
                     96: *          Kahan, LAPACK Working Note #3.
                     97: *
                     98: *  M       (output) INTEGER
                     99: *          The total number of eigenvalues found.  0 <= M <= N.
                    100: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    101: *
                    102: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    103: *          If INFO = 0, the selected eigenvalues in ascending order.
                    104: *
                    105: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    106: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    107: *          contain the orthonormal eigenvectors of the matrix A
                    108: *          corresponding to the selected eigenvalues, with the i-th
                    109: *          column of Z holding the eigenvector associated with W(i).
                    110: *          If an eigenvector fails to converge, then that column of Z
                    111: *          contains the latest approximation to the eigenvector, and the
                    112: *          index of the eigenvector is returned in IFAIL.
                    113: *          If JOBZ = 'N', then Z is not referenced.
                    114: *          Note: the user must ensure that at least max(1,M) columns are
                    115: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    116: *          is not known in advance and an upper bound must be used.
                    117: *
                    118: *  LDZ     (input) INTEGER
                    119: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    120: *          JOBZ = 'V', LDZ >= max(1,N).
                    121: *
                    122: *  WORK    (workspace) DOUBLE PRECISION array, dimension (8*N)
                    123: *
                    124: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    125: *
                    126: *  IFAIL   (output) INTEGER array, dimension (N)
                    127: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    128: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    129: *          indices of the eigenvectors that failed to converge.
                    130: *          If JOBZ = 'N', then IFAIL is not referenced.
                    131: *
                    132: *  INFO    (output) INTEGER
                    133: *          = 0:  successful exit
                    134: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    135: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    136: *                Their indices are stored in array IFAIL.
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       DOUBLE PRECISION   ZERO, ONE
                    142:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    143: *     ..
                    144: *     .. Local Scalars ..
                    145:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    146:       CHARACTER          ORDER
                    147:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    148:      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
                    149:      $                   J, JJ, NSPLIT
                    150:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    151:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       LOGICAL            LSAME
                    155:       DOUBLE PRECISION   DLAMCH, DLANSP
                    156:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    157: *     ..
                    158: *     .. External Subroutines ..
                    159:       EXTERNAL           DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
                    160:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    161: *     ..
                    162: *     .. Intrinsic Functions ..
                    163:       INTRINSIC          MAX, MIN, SQRT
                    164: *     ..
                    165: *     .. Executable Statements ..
                    166: *
                    167: *     Test the input parameters.
                    168: *
                    169:       WANTZ = LSAME( JOBZ, 'V' )
                    170:       ALLEIG = LSAME( RANGE, 'A' )
                    171:       VALEIG = LSAME( RANGE, 'V' )
                    172:       INDEIG = LSAME( RANGE, 'I' )
                    173: *
                    174:       INFO = 0
                    175:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    176:          INFO = -1
                    177:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    178:          INFO = -2
                    179:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    180:      $          THEN
                    181:          INFO = -3
                    182:       ELSE IF( N.LT.0 ) THEN
                    183:          INFO = -4
                    184:       ELSE
                    185:          IF( VALEIG ) THEN
                    186:             IF( N.GT.0 .AND. VU.LE.VL )
                    187:      $         INFO = -7
                    188:          ELSE IF( INDEIG ) THEN
                    189:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    190:                INFO = -8
                    191:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    192:                INFO = -9
                    193:             END IF
                    194:          END IF
                    195:       END IF
                    196:       IF( INFO.EQ.0 ) THEN
                    197:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    198:      $      INFO = -14
                    199:       END IF
                    200: *
                    201:       IF( INFO.NE.0 ) THEN
                    202:          CALL XERBLA( 'DSPEVX', -INFO )
                    203:          RETURN
                    204:       END IF
                    205: *
                    206: *     Quick return if possible
                    207: *
                    208:       M = 0
                    209:       IF( N.EQ.0 )
                    210:      $   RETURN
                    211: *
                    212:       IF( N.EQ.1 ) THEN
                    213:          IF( ALLEIG .OR. INDEIG ) THEN
                    214:             M = 1
                    215:             W( 1 ) = AP( 1 )
                    216:          ELSE
                    217:             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
                    218:                M = 1
                    219:                W( 1 ) = AP( 1 )
                    220:             END IF
                    221:          END IF
                    222:          IF( WANTZ )
                    223:      $      Z( 1, 1 ) = ONE
                    224:          RETURN
                    225:       END IF
                    226: *
                    227: *     Get machine constants.
                    228: *
                    229:       SAFMIN = DLAMCH( 'Safe minimum' )
                    230:       EPS = DLAMCH( 'Precision' )
                    231:       SMLNUM = SAFMIN / EPS
                    232:       BIGNUM = ONE / SMLNUM
                    233:       RMIN = SQRT( SMLNUM )
                    234:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    235: *
                    236: *     Scale matrix to allowable range, if necessary.
                    237: *
                    238:       ISCALE = 0
                    239:       ABSTLL = ABSTOL
                    240:       IF( VALEIG ) THEN
                    241:          VLL = VL
                    242:          VUU = VU
                    243:       ELSE
                    244:          VLL = ZERO
                    245:          VUU = ZERO
                    246:       END IF
                    247:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    248:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    249:          ISCALE = 1
                    250:          SIGMA = RMIN / ANRM
                    251:       ELSE IF( ANRM.GT.RMAX ) THEN
                    252:          ISCALE = 1
                    253:          SIGMA = RMAX / ANRM
                    254:       END IF
                    255:       IF( ISCALE.EQ.1 ) THEN
                    256:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    257:          IF( ABSTOL.GT.0 )
                    258:      $      ABSTLL = ABSTOL*SIGMA
                    259:          IF( VALEIG ) THEN
                    260:             VLL = VL*SIGMA
                    261:             VUU = VU*SIGMA
                    262:          END IF
                    263:       END IF
                    264: *
                    265: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    266: *
                    267:       INDTAU = 1
                    268:       INDE = INDTAU + N
                    269:       INDD = INDE + N
                    270:       INDWRK = INDD + N
                    271:       CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
                    272:      $             WORK( INDTAU ), IINFO )
                    273: *
                    274: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    275: *     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails
                    276: *     for some eigenvalue, then try DSTEBZ.
                    277: *
                    278:       TEST = .FALSE.
                    279:       IF (INDEIG) THEN
                    280:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    281:             TEST = .TRUE.
                    282:          END IF
                    283:       END IF
                    284:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    285:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    286:          INDEE = INDWRK + 2*N
                    287:          IF( .NOT.WANTZ ) THEN
                    288:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    289:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    290:          ELSE
                    291:             CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
                    292:      $                   WORK( INDWRK ), IINFO )
                    293:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    294:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    295:      $                   WORK( INDWRK ), INFO )
                    296:             IF( INFO.EQ.0 ) THEN
                    297:                DO 10 I = 1, N
                    298:                   IFAIL( I ) = 0
                    299:    10          CONTINUE
                    300:             END IF
                    301:          END IF
                    302:          IF( INFO.EQ.0 ) THEN
                    303:             M = N
                    304:             GO TO 20
                    305:          END IF
                    306:          INFO = 0
                    307:       END IF
                    308: *
                    309: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    310: *
                    311:       IF( WANTZ ) THEN
                    312:          ORDER = 'B'
                    313:       ELSE
                    314:          ORDER = 'E'
                    315:       END IF
                    316:       INDIBL = 1
                    317:       INDISP = INDIBL + N
                    318:       INDIWO = INDISP + N
                    319:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    320:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    321:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    322:      $             IWORK( INDIWO ), INFO )
                    323: *
                    324:       IF( WANTZ ) THEN
                    325:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    326:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    327:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    328: *
                    329: *        Apply orthogonal matrix used in reduction to tridiagonal
                    330: *        form to eigenvectors returned by DSTEIN.
                    331: *
                    332:          CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
                    333:      $                WORK( INDWRK ), IINFO )
                    334:       END IF
                    335: *
                    336: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    337: *
                    338:    20 CONTINUE
                    339:       IF( ISCALE.EQ.1 ) THEN
                    340:          IF( INFO.EQ.0 ) THEN
                    341:             IMAX = M
                    342:          ELSE
                    343:             IMAX = INFO - 1
                    344:          END IF
                    345:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    346:       END IF
                    347: *
                    348: *     If eigenvalues are not in order, then sort them, along with
                    349: *     eigenvectors.
                    350: *
                    351:       IF( WANTZ ) THEN
                    352:          DO 40 J = 1, M - 1
                    353:             I = 0
                    354:             TMP1 = W( J )
                    355:             DO 30 JJ = J + 1, M
                    356:                IF( W( JJ ).LT.TMP1 ) THEN
                    357:                   I = JJ
                    358:                   TMP1 = W( JJ )
                    359:                END IF
                    360:    30       CONTINUE
                    361: *
                    362:             IF( I.NE.0 ) THEN
                    363:                ITMP1 = IWORK( INDIBL+I-1 )
                    364:                W( I ) = W( J )
                    365:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    366:                W( J ) = TMP1
                    367:                IWORK( INDIBL+J-1 ) = ITMP1
                    368:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    369:                IF( INFO.NE.0 ) THEN
                    370:                   ITMP1 = IFAIL( I )
                    371:                   IFAIL( I ) = IFAIL( J )
                    372:                   IFAIL( J ) = ITMP1
                    373:                END IF
                    374:             END IF
                    375:    40    CONTINUE
                    376:       END IF
                    377: *
                    378:       RETURN
                    379: *
                    380: *     End of DSPEVX
                    381: *
                    382:       END

CVSweb interface <joel.bertrand@systella.fr>