Annotation of rpl/lapack/lapack/dspevx.f, revision 1.18

1.8       bertrand    1: *> \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSPEVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                     22: *                          ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
                     23: *                          INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, LDZ, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                     33: *       ..
1.15      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> DSPEVX computes selected eigenvalues and, optionally, eigenvectors
                     42: *> of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
                     43: *> can be selected by specifying either a range of values or a range of
                     44: *> indices for the desired eigenvalues.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] JOBZ
                     51: *> \verbatim
                     52: *>          JOBZ is CHARACTER*1
                     53: *>          = 'N':  Compute eigenvalues only;
                     54: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] RANGE
                     58: *> \verbatim
                     59: *>          RANGE is CHARACTER*1
                     60: *>          = 'A': all eigenvalues will be found;
                     61: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     62: *>                 will be found;
                     63: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] UPLO
                     67: *> \verbatim
                     68: *>          UPLO is CHARACTER*1
                     69: *>          = 'U':  Upper triangle of A is stored;
                     70: *>          = 'L':  Lower triangle of A is stored.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] N
                     74: *> \verbatim
                     75: *>          N is INTEGER
                     76: *>          The order of the matrix A.  N >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] AP
                     80: *> \verbatim
                     81: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     82: *>          On entry, the upper or lower triangle of the symmetric matrix
                     83: *>          A, packed columnwise in a linear array.  The j-th column of A
                     84: *>          is stored in the array AP as follows:
                     85: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     86: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     87: *>
                     88: *>          On exit, AP is overwritten by values generated during the
                     89: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     90: *>          and first superdiagonal of the tridiagonal matrix T overwrite
                     91: *>          the corresponding elements of A, and if UPLO = 'L', the
                     92: *>          diagonal and first subdiagonal of T overwrite the
                     93: *>          corresponding elements of A.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] VL
                     97: *> \verbatim
                     98: *>          VL is DOUBLE PRECISION
1.13      bertrand   99: *>          If RANGE='V', the lower bound of the interval to
                    100: *>          be searched for eigenvalues. VL < VU.
                    101: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand  102: *> \endverbatim
                    103: *>
                    104: *> \param[in] VU
                    105: *> \verbatim
                    106: *>          VU is DOUBLE PRECISION
1.13      bertrand  107: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  108: *>          be searched for eigenvalues. VL < VU.
                    109: *>          Not referenced if RANGE = 'A' or 'I'.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] IL
                    113: *> \verbatim
                    114: *>          IL is INTEGER
1.13      bertrand  115: *>          If RANGE='I', the index of the
                    116: *>          smallest eigenvalue to be returned.
                    117: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    118: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  119: *> \endverbatim
                    120: *>
                    121: *> \param[in] IU
                    122: *> \verbatim
                    123: *>          IU is INTEGER
1.13      bertrand  124: *>          If RANGE='I', the index of the
                    125: *>          largest eigenvalue to be returned.
1.8       bertrand  126: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    127: *>          Not referenced if RANGE = 'A' or 'V'.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] ABSTOL
                    131: *> \verbatim
                    132: *>          ABSTOL is DOUBLE PRECISION
                    133: *>          The absolute error tolerance for the eigenvalues.
                    134: *>          An approximate eigenvalue is accepted as converged
                    135: *>          when it is determined to lie in an interval [a,b]
                    136: *>          of width less than or equal to
                    137: *>
                    138: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    139: *>
                    140: *>          where EPS is the machine precision.  If ABSTOL is less than
                    141: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    142: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    143: *>          by reducing AP to tridiagonal form.
                    144: *>
                    145: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    146: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    147: *>          If this routine returns with INFO>0, indicating that some
                    148: *>          eigenvectors did not converge, try setting ABSTOL to
                    149: *>          2*DLAMCH('S').
                    150: *>
                    151: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    152: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    153: *>          Kahan, LAPACK Working Note #3.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] M
                    157: *> \verbatim
                    158: *>          M is INTEGER
                    159: *>          The total number of eigenvalues found.  0 <= M <= N.
                    160: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] W
                    164: *> \verbatim
                    165: *>          W is DOUBLE PRECISION array, dimension (N)
                    166: *>          If INFO = 0, the selected eigenvalues in ascending order.
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[out] Z
                    170: *> \verbatim
                    171: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    172: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    173: *>          contain the orthonormal eigenvectors of the matrix A
                    174: *>          corresponding to the selected eigenvalues, with the i-th
                    175: *>          column of Z holding the eigenvector associated with W(i).
                    176: *>          If an eigenvector fails to converge, then that column of Z
                    177: *>          contains the latest approximation to the eigenvector, and the
                    178: *>          index of the eigenvector is returned in IFAIL.
                    179: *>          If JOBZ = 'N', then Z is not referenced.
                    180: *>          Note: the user must ensure that at least max(1,M) columns are
                    181: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    182: *>          is not known in advance and an upper bound must be used.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[in] LDZ
                    186: *> \verbatim
                    187: *>          LDZ is INTEGER
                    188: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    189: *>          JOBZ = 'V', LDZ >= max(1,N).
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] WORK
                    193: *> \verbatim
                    194: *>          WORK is DOUBLE PRECISION array, dimension (8*N)
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] IWORK
                    198: *> \verbatim
                    199: *>          IWORK is INTEGER array, dimension (5*N)
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[out] IFAIL
                    203: *> \verbatim
                    204: *>          IFAIL is INTEGER array, dimension (N)
                    205: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    206: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    207: *>          indices of the eigenvectors that failed to converge.
                    208: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[out] INFO
                    212: *> \verbatim
                    213: *>          INFO is INTEGER
                    214: *>          = 0:  successful exit
                    215: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    216: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    217: *>                Their indices are stored in array IFAIL.
                    218: *> \endverbatim
                    219: *
                    220: *  Authors:
                    221: *  ========
                    222: *
1.15      bertrand  223: *> \author Univ. of Tennessee
                    224: *> \author Univ. of California Berkeley
                    225: *> \author Univ. of Colorado Denver
                    226: *> \author NAG Ltd.
1.8       bertrand  227: *
                    228: *> \ingroup doubleOTHEReigen
                    229: *
                    230: *  =====================================================================
1.1       bertrand  231:       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                    232:      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
                    233:      $                   INFO )
                    234: *
1.18    ! bertrand  235: *  -- LAPACK driver routine --
1.1       bertrand  236: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    237: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    238: *
                    239: *     .. Scalar Arguments ..
                    240:       CHARACTER          JOBZ, RANGE, UPLO
                    241:       INTEGER            IL, INFO, IU, LDZ, M, N
                    242:       DOUBLE PRECISION   ABSTOL, VL, VU
                    243: *     ..
                    244: *     .. Array Arguments ..
                    245:       INTEGER            IFAIL( * ), IWORK( * )
                    246:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                    247: *     ..
                    248: *
                    249: *  =====================================================================
                    250: *
                    251: *     .. Parameters ..
                    252:       DOUBLE PRECISION   ZERO, ONE
                    253:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    254: *     ..
                    255: *     .. Local Scalars ..
                    256:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    257:       CHARACTER          ORDER
                    258:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    259:      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
                    260:      $                   J, JJ, NSPLIT
                    261:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    262:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    263: *     ..
                    264: *     .. External Functions ..
                    265:       LOGICAL            LSAME
                    266:       DOUBLE PRECISION   DLAMCH, DLANSP
                    267:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    268: *     ..
                    269: *     .. External Subroutines ..
                    270:       EXTERNAL           DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
                    271:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    272: *     ..
                    273: *     .. Intrinsic Functions ..
                    274:       INTRINSIC          MAX, MIN, SQRT
                    275: *     ..
                    276: *     .. Executable Statements ..
                    277: *
                    278: *     Test the input parameters.
                    279: *
                    280:       WANTZ = LSAME( JOBZ, 'V' )
                    281:       ALLEIG = LSAME( RANGE, 'A' )
                    282:       VALEIG = LSAME( RANGE, 'V' )
                    283:       INDEIG = LSAME( RANGE, 'I' )
                    284: *
                    285:       INFO = 0
                    286:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    287:          INFO = -1
                    288:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    289:          INFO = -2
                    290:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    291:      $          THEN
                    292:          INFO = -3
                    293:       ELSE IF( N.LT.0 ) THEN
                    294:          INFO = -4
                    295:       ELSE
                    296:          IF( VALEIG ) THEN
                    297:             IF( N.GT.0 .AND. VU.LE.VL )
                    298:      $         INFO = -7
                    299:          ELSE IF( INDEIG ) THEN
                    300:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    301:                INFO = -8
                    302:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    303:                INFO = -9
                    304:             END IF
                    305:          END IF
                    306:       END IF
                    307:       IF( INFO.EQ.0 ) THEN
                    308:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    309:      $      INFO = -14
                    310:       END IF
                    311: *
                    312:       IF( INFO.NE.0 ) THEN
                    313:          CALL XERBLA( 'DSPEVX', -INFO )
                    314:          RETURN
                    315:       END IF
                    316: *
                    317: *     Quick return if possible
                    318: *
                    319:       M = 0
                    320:       IF( N.EQ.0 )
                    321:      $   RETURN
                    322: *
                    323:       IF( N.EQ.1 ) THEN
                    324:          IF( ALLEIG .OR. INDEIG ) THEN
                    325:             M = 1
                    326:             W( 1 ) = AP( 1 )
                    327:          ELSE
                    328:             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
                    329:                M = 1
                    330:                W( 1 ) = AP( 1 )
                    331:             END IF
                    332:          END IF
                    333:          IF( WANTZ )
                    334:      $      Z( 1, 1 ) = ONE
                    335:          RETURN
                    336:       END IF
                    337: *
                    338: *     Get machine constants.
                    339: *
                    340:       SAFMIN = DLAMCH( 'Safe minimum' )
                    341:       EPS = DLAMCH( 'Precision' )
                    342:       SMLNUM = SAFMIN / EPS
                    343:       BIGNUM = ONE / SMLNUM
                    344:       RMIN = SQRT( SMLNUM )
                    345:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    346: *
                    347: *     Scale matrix to allowable range, if necessary.
                    348: *
                    349:       ISCALE = 0
                    350:       ABSTLL = ABSTOL
                    351:       IF( VALEIG ) THEN
                    352:          VLL = VL
                    353:          VUU = VU
                    354:       ELSE
                    355:          VLL = ZERO
                    356:          VUU = ZERO
                    357:       END IF
                    358:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    359:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    360:          ISCALE = 1
                    361:          SIGMA = RMIN / ANRM
                    362:       ELSE IF( ANRM.GT.RMAX ) THEN
                    363:          ISCALE = 1
                    364:          SIGMA = RMAX / ANRM
                    365:       END IF
                    366:       IF( ISCALE.EQ.1 ) THEN
                    367:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    368:          IF( ABSTOL.GT.0 )
                    369:      $      ABSTLL = ABSTOL*SIGMA
                    370:          IF( VALEIG ) THEN
                    371:             VLL = VL*SIGMA
                    372:             VUU = VU*SIGMA
                    373:          END IF
                    374:       END IF
                    375: *
                    376: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    377: *
                    378:       INDTAU = 1
                    379:       INDE = INDTAU + N
                    380:       INDD = INDE + N
                    381:       INDWRK = INDD + N
                    382:       CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
                    383:      $             WORK( INDTAU ), IINFO )
                    384: *
                    385: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    386: *     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails
                    387: *     for some eigenvalue, then try DSTEBZ.
                    388: *
                    389:       TEST = .FALSE.
                    390:       IF (INDEIG) THEN
                    391:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    392:             TEST = .TRUE.
                    393:          END IF
                    394:       END IF
                    395:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    396:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    397:          INDEE = INDWRK + 2*N
                    398:          IF( .NOT.WANTZ ) THEN
                    399:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    400:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    401:          ELSE
                    402:             CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
                    403:      $                   WORK( INDWRK ), IINFO )
                    404:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    405:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    406:      $                   WORK( INDWRK ), INFO )
                    407:             IF( INFO.EQ.0 ) THEN
                    408:                DO 10 I = 1, N
                    409:                   IFAIL( I ) = 0
                    410:    10          CONTINUE
                    411:             END IF
                    412:          END IF
                    413:          IF( INFO.EQ.0 ) THEN
                    414:             M = N
                    415:             GO TO 20
                    416:          END IF
                    417:          INFO = 0
                    418:       END IF
                    419: *
                    420: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    421: *
                    422:       IF( WANTZ ) THEN
                    423:          ORDER = 'B'
                    424:       ELSE
                    425:          ORDER = 'E'
                    426:       END IF
                    427:       INDIBL = 1
                    428:       INDISP = INDIBL + N
                    429:       INDIWO = INDISP + N
                    430:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    431:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    432:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    433:      $             IWORK( INDIWO ), INFO )
                    434: *
                    435:       IF( WANTZ ) THEN
                    436:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    437:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    438:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    439: *
                    440: *        Apply orthogonal matrix used in reduction to tridiagonal
                    441: *        form to eigenvectors returned by DSTEIN.
                    442: *
                    443:          CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
                    444:      $                WORK( INDWRK ), IINFO )
                    445:       END IF
                    446: *
                    447: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    448: *
                    449:    20 CONTINUE
                    450:       IF( ISCALE.EQ.1 ) THEN
                    451:          IF( INFO.EQ.0 ) THEN
                    452:             IMAX = M
                    453:          ELSE
                    454:             IMAX = INFO - 1
                    455:          END IF
                    456:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    457:       END IF
                    458: *
                    459: *     If eigenvalues are not in order, then sort them, along with
                    460: *     eigenvectors.
                    461: *
                    462:       IF( WANTZ ) THEN
                    463:          DO 40 J = 1, M - 1
                    464:             I = 0
                    465:             TMP1 = W( J )
                    466:             DO 30 JJ = J + 1, M
                    467:                IF( W( JJ ).LT.TMP1 ) THEN
                    468:                   I = JJ
                    469:                   TMP1 = W( JJ )
                    470:                END IF
                    471:    30       CONTINUE
                    472: *
                    473:             IF( I.NE.0 ) THEN
                    474:                ITMP1 = IWORK( INDIBL+I-1 )
                    475:                W( I ) = W( J )
                    476:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    477:                W( J ) = TMP1
                    478:                IWORK( INDIBL+J-1 ) = ITMP1
                    479:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    480:                IF( INFO.NE.0 ) THEN
                    481:                   ITMP1 = IFAIL( I )
                    482:                   IFAIL( I ) = IFAIL( J )
                    483:                   IFAIL( J ) = ITMP1
                    484:                END IF
                    485:             END IF
                    486:    40    CONTINUE
                    487:       END IF
                    488: *
                    489:       RETURN
                    490: *
                    491: *     End of DSPEVX
                    492: *
                    493:       END

CVSweb interface <joel.bertrand@systella.fr>