Annotation of rpl/lapack/lapack/dspevx.f, revision 1.12

1.8       bertrand    1: *> \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSPEVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                     22: *                          ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
                     23: *                          INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, LDZ, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                     33: *       ..
                     34: *  
                     35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> DSPEVX computes selected eigenvalues and, optionally, eigenvectors
                     42: *> of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
                     43: *> can be selected by specifying either a range of values or a range of
                     44: *> indices for the desired eigenvalues.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] JOBZ
                     51: *> \verbatim
                     52: *>          JOBZ is CHARACTER*1
                     53: *>          = 'N':  Compute eigenvalues only;
                     54: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] RANGE
                     58: *> \verbatim
                     59: *>          RANGE is CHARACTER*1
                     60: *>          = 'A': all eigenvalues will be found;
                     61: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     62: *>                 will be found;
                     63: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] UPLO
                     67: *> \verbatim
                     68: *>          UPLO is CHARACTER*1
                     69: *>          = 'U':  Upper triangle of A is stored;
                     70: *>          = 'L':  Lower triangle of A is stored.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] N
                     74: *> \verbatim
                     75: *>          N is INTEGER
                     76: *>          The order of the matrix A.  N >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] AP
                     80: *> \verbatim
                     81: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     82: *>          On entry, the upper or lower triangle of the symmetric matrix
                     83: *>          A, packed columnwise in a linear array.  The j-th column of A
                     84: *>          is stored in the array AP as follows:
                     85: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     86: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     87: *>
                     88: *>          On exit, AP is overwritten by values generated during the
                     89: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     90: *>          and first superdiagonal of the tridiagonal matrix T overwrite
                     91: *>          the corresponding elements of A, and if UPLO = 'L', the
                     92: *>          diagonal and first subdiagonal of T overwrite the
                     93: *>          corresponding elements of A.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] VL
                     97: *> \verbatim
                     98: *>          VL is DOUBLE PRECISION
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] VU
                    102: *> \verbatim
                    103: *>          VU is DOUBLE PRECISION
                    104: *>          If RANGE='V', the lower and upper bounds of the interval to
                    105: *>          be searched for eigenvalues. VL < VU.
                    106: *>          Not referenced if RANGE = 'A' or 'I'.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] IL
                    110: *> \verbatim
                    111: *>          IL is INTEGER
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IU
                    115: *> \verbatim
                    116: *>          IU is INTEGER
                    117: *>          If RANGE='I', the indices (in ascending order) of the
                    118: *>          smallest and largest eigenvalues to be returned.
                    119: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    120: *>          Not referenced if RANGE = 'A' or 'V'.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] ABSTOL
                    124: *> \verbatim
                    125: *>          ABSTOL is DOUBLE PRECISION
                    126: *>          The absolute error tolerance for the eigenvalues.
                    127: *>          An approximate eigenvalue is accepted as converged
                    128: *>          when it is determined to lie in an interval [a,b]
                    129: *>          of width less than or equal to
                    130: *>
                    131: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    132: *>
                    133: *>          where EPS is the machine precision.  If ABSTOL is less than
                    134: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    135: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    136: *>          by reducing AP to tridiagonal form.
                    137: *>
                    138: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    139: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    140: *>          If this routine returns with INFO>0, indicating that some
                    141: *>          eigenvectors did not converge, try setting ABSTOL to
                    142: *>          2*DLAMCH('S').
                    143: *>
                    144: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    145: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    146: *>          Kahan, LAPACK Working Note #3.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] M
                    150: *> \verbatim
                    151: *>          M is INTEGER
                    152: *>          The total number of eigenvalues found.  0 <= M <= N.
                    153: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] W
                    157: *> \verbatim
                    158: *>          W is DOUBLE PRECISION array, dimension (N)
                    159: *>          If INFO = 0, the selected eigenvalues in ascending order.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] Z
                    163: *> \verbatim
                    164: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    165: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    166: *>          contain the orthonormal eigenvectors of the matrix A
                    167: *>          corresponding to the selected eigenvalues, with the i-th
                    168: *>          column of Z holding the eigenvector associated with W(i).
                    169: *>          If an eigenvector fails to converge, then that column of Z
                    170: *>          contains the latest approximation to the eigenvector, and the
                    171: *>          index of the eigenvector is returned in IFAIL.
                    172: *>          If JOBZ = 'N', then Z is not referenced.
                    173: *>          Note: the user must ensure that at least max(1,M) columns are
                    174: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    175: *>          is not known in advance and an upper bound must be used.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDZ
                    179: *> \verbatim
                    180: *>          LDZ is INTEGER
                    181: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    182: *>          JOBZ = 'V', LDZ >= max(1,N).
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] WORK
                    186: *> \verbatim
                    187: *>          WORK is DOUBLE PRECISION array, dimension (8*N)
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] IWORK
                    191: *> \verbatim
                    192: *>          IWORK is INTEGER array, dimension (5*N)
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] IFAIL
                    196: *> \verbatim
                    197: *>          IFAIL is INTEGER array, dimension (N)
                    198: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    199: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    200: *>          indices of the eigenvectors that failed to converge.
                    201: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[out] INFO
                    205: *> \verbatim
                    206: *>          INFO is INTEGER
                    207: *>          = 0:  successful exit
                    208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    209: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    210: *>                Their indices are stored in array IFAIL.
                    211: *> \endverbatim
                    212: *
                    213: *  Authors:
                    214: *  ========
                    215: *
                    216: *> \author Univ. of Tennessee 
                    217: *> \author Univ. of California Berkeley 
                    218: *> \author Univ. of Colorado Denver 
                    219: *> \author NAG Ltd. 
                    220: *
                    221: *> \date November 2011
                    222: *
                    223: *> \ingroup doubleOTHEReigen
                    224: *
                    225: *  =====================================================================
1.1       bertrand  226:       SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
                    227:      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
                    228:      $                   INFO )
                    229: *
1.8       bertrand  230: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  233: *     November 2011
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          JOBZ, RANGE, UPLO
                    237:       INTEGER            IL, INFO, IU, LDZ, M, N
                    238:       DOUBLE PRECISION   ABSTOL, VL, VU
                    239: *     ..
                    240: *     .. Array Arguments ..
                    241:       INTEGER            IFAIL( * ), IWORK( * )
                    242:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                    243: *     ..
                    244: *
                    245: *  =====================================================================
                    246: *
                    247: *     .. Parameters ..
                    248:       DOUBLE PRECISION   ZERO, ONE
                    249:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
                    253:       CHARACTER          ORDER
                    254:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    255:      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
                    256:      $                   J, JJ, NSPLIT
                    257:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    258:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    259: *     ..
                    260: *     .. External Functions ..
                    261:       LOGICAL            LSAME
                    262:       DOUBLE PRECISION   DLAMCH, DLANSP
                    263:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    264: *     ..
                    265: *     .. External Subroutines ..
                    266:       EXTERNAL           DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
                    267:      $                   DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    268: *     ..
                    269: *     .. Intrinsic Functions ..
                    270:       INTRINSIC          MAX, MIN, SQRT
                    271: *     ..
                    272: *     .. Executable Statements ..
                    273: *
                    274: *     Test the input parameters.
                    275: *
                    276:       WANTZ = LSAME( JOBZ, 'V' )
                    277:       ALLEIG = LSAME( RANGE, 'A' )
                    278:       VALEIG = LSAME( RANGE, 'V' )
                    279:       INDEIG = LSAME( RANGE, 'I' )
                    280: *
                    281:       INFO = 0
                    282:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    283:          INFO = -1
                    284:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    285:          INFO = -2
                    286:       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
                    287:      $          THEN
                    288:          INFO = -3
                    289:       ELSE IF( N.LT.0 ) THEN
                    290:          INFO = -4
                    291:       ELSE
                    292:          IF( VALEIG ) THEN
                    293:             IF( N.GT.0 .AND. VU.LE.VL )
                    294:      $         INFO = -7
                    295:          ELSE IF( INDEIG ) THEN
                    296:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    297:                INFO = -8
                    298:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    299:                INFO = -9
                    300:             END IF
                    301:          END IF
                    302:       END IF
                    303:       IF( INFO.EQ.0 ) THEN
                    304:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    305:      $      INFO = -14
                    306:       END IF
                    307: *
                    308:       IF( INFO.NE.0 ) THEN
                    309:          CALL XERBLA( 'DSPEVX', -INFO )
                    310:          RETURN
                    311:       END IF
                    312: *
                    313: *     Quick return if possible
                    314: *
                    315:       M = 0
                    316:       IF( N.EQ.0 )
                    317:      $   RETURN
                    318: *
                    319:       IF( N.EQ.1 ) THEN
                    320:          IF( ALLEIG .OR. INDEIG ) THEN
                    321:             M = 1
                    322:             W( 1 ) = AP( 1 )
                    323:          ELSE
                    324:             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
                    325:                M = 1
                    326:                W( 1 ) = AP( 1 )
                    327:             END IF
                    328:          END IF
                    329:          IF( WANTZ )
                    330:      $      Z( 1, 1 ) = ONE
                    331:          RETURN
                    332:       END IF
                    333: *
                    334: *     Get machine constants.
                    335: *
                    336:       SAFMIN = DLAMCH( 'Safe minimum' )
                    337:       EPS = DLAMCH( 'Precision' )
                    338:       SMLNUM = SAFMIN / EPS
                    339:       BIGNUM = ONE / SMLNUM
                    340:       RMIN = SQRT( SMLNUM )
                    341:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    342: *
                    343: *     Scale matrix to allowable range, if necessary.
                    344: *
                    345:       ISCALE = 0
                    346:       ABSTLL = ABSTOL
                    347:       IF( VALEIG ) THEN
                    348:          VLL = VL
                    349:          VUU = VU
                    350:       ELSE
                    351:          VLL = ZERO
                    352:          VUU = ZERO
                    353:       END IF
                    354:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    355:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    356:          ISCALE = 1
                    357:          SIGMA = RMIN / ANRM
                    358:       ELSE IF( ANRM.GT.RMAX ) THEN
                    359:          ISCALE = 1
                    360:          SIGMA = RMAX / ANRM
                    361:       END IF
                    362:       IF( ISCALE.EQ.1 ) THEN
                    363:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    364:          IF( ABSTOL.GT.0 )
                    365:      $      ABSTLL = ABSTOL*SIGMA
                    366:          IF( VALEIG ) THEN
                    367:             VLL = VL*SIGMA
                    368:             VUU = VU*SIGMA
                    369:          END IF
                    370:       END IF
                    371: *
                    372: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    373: *
                    374:       INDTAU = 1
                    375:       INDE = INDTAU + N
                    376:       INDD = INDE + N
                    377:       INDWRK = INDD + N
                    378:       CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
                    379:      $             WORK( INDTAU ), IINFO )
                    380: *
                    381: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    382: *     to zero, then call DSTERF or DOPGTR and SSTEQR.  If this fails
                    383: *     for some eigenvalue, then try DSTEBZ.
                    384: *
                    385:       TEST = .FALSE.
                    386:       IF (INDEIG) THEN
                    387:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    388:             TEST = .TRUE.
                    389:          END IF
                    390:       END IF
                    391:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    392:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    393:          INDEE = INDWRK + 2*N
                    394:          IF( .NOT.WANTZ ) THEN
                    395:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    396:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    397:          ELSE
                    398:             CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
                    399:      $                   WORK( INDWRK ), IINFO )
                    400:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    401:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    402:      $                   WORK( INDWRK ), INFO )
                    403:             IF( INFO.EQ.0 ) THEN
                    404:                DO 10 I = 1, N
                    405:                   IFAIL( I ) = 0
                    406:    10          CONTINUE
                    407:             END IF
                    408:          END IF
                    409:          IF( INFO.EQ.0 ) THEN
                    410:             M = N
                    411:             GO TO 20
                    412:          END IF
                    413:          INFO = 0
                    414:       END IF
                    415: *
                    416: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    417: *
                    418:       IF( WANTZ ) THEN
                    419:          ORDER = 'B'
                    420:       ELSE
                    421:          ORDER = 'E'
                    422:       END IF
                    423:       INDIBL = 1
                    424:       INDISP = INDIBL + N
                    425:       INDIWO = INDISP + N
                    426:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    427:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    428:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    429:      $             IWORK( INDIWO ), INFO )
                    430: *
                    431:       IF( WANTZ ) THEN
                    432:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    433:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    434:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    435: *
                    436: *        Apply orthogonal matrix used in reduction to tridiagonal
                    437: *        form to eigenvectors returned by DSTEIN.
                    438: *
                    439:          CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
                    440:      $                WORK( INDWRK ), IINFO )
                    441:       END IF
                    442: *
                    443: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    444: *
                    445:    20 CONTINUE
                    446:       IF( ISCALE.EQ.1 ) THEN
                    447:          IF( INFO.EQ.0 ) THEN
                    448:             IMAX = M
                    449:          ELSE
                    450:             IMAX = INFO - 1
                    451:          END IF
                    452:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    453:       END IF
                    454: *
                    455: *     If eigenvalues are not in order, then sort them, along with
                    456: *     eigenvectors.
                    457: *
                    458:       IF( WANTZ ) THEN
                    459:          DO 40 J = 1, M - 1
                    460:             I = 0
                    461:             TMP1 = W( J )
                    462:             DO 30 JJ = J + 1, M
                    463:                IF( W( JJ ).LT.TMP1 ) THEN
                    464:                   I = JJ
                    465:                   TMP1 = W( JJ )
                    466:                END IF
                    467:    30       CONTINUE
                    468: *
                    469:             IF( I.NE.0 ) THEN
                    470:                ITMP1 = IWORK( INDIBL+I-1 )
                    471:                W( I ) = W( J )
                    472:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    473:                W( J ) = TMP1
                    474:                IWORK( INDIBL+J-1 ) = ITMP1
                    475:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    476:                IF( INFO.NE.0 ) THEN
                    477:                   ITMP1 = IFAIL( I )
                    478:                   IFAIL( I ) = IFAIL( J )
                    479:                   IFAIL( J ) = ITMP1
                    480:                END IF
                    481:             END IF
                    482:    40    CONTINUE
                    483:       END IF
                    484: *
                    485:       RETURN
                    486: *
                    487: *     End of DSPEVX
                    488: *
                    489:       END

CVSweb interface <joel.bertrand@systella.fr>