Annotation of rpl/lapack/lapack/dspevd.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSPEVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
        !            22: *                          IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DSPEVD computes all the eigenvalues and, optionally, eigenvectors
        !            40: *> of a real symmetric matrix A in packed storage. If eigenvectors are
        !            41: *> desired, it uses a divide and conquer algorithm.
        !            42: *>
        !            43: *> The divide and conquer algorithm makes very mild assumptions about
        !            44: *> floating point arithmetic. It will work on machines with a guard
        !            45: *> digit in add/subtract, or on those binary machines without guard
        !            46: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            47: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            48: *> without guard digits, but we know of none.
        !            49: *> \endverbatim
        !            50: *
        !            51: *  Arguments:
        !            52: *  ==========
        !            53: *
        !            54: *> \param[in] JOBZ
        !            55: *> \verbatim
        !            56: *>          JOBZ is CHARACTER*1
        !            57: *>          = 'N':  Compute eigenvalues only;
        !            58: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            59: *> \endverbatim
        !            60: *>
        !            61: *> \param[in] UPLO
        !            62: *> \verbatim
        !            63: *>          UPLO is CHARACTER*1
        !            64: *>          = 'U':  Upper triangle of A is stored;
        !            65: *>          = 'L':  Lower triangle of A is stored.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] N
        !            69: *> \verbatim
        !            70: *>          N is INTEGER
        !            71: *>          The order of the matrix A.  N >= 0.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in,out] AP
        !            75: *> \verbatim
        !            76: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
        !            77: *>          On entry, the upper or lower triangle of the symmetric matrix
        !            78: *>          A, packed columnwise in a linear array.  The j-th column of A
        !            79: *>          is stored in the array AP as follows:
        !            80: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
        !            81: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
        !            82: *>
        !            83: *>          On exit, AP is overwritten by values generated during the
        !            84: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
        !            85: *>          and first superdiagonal of the tridiagonal matrix T overwrite
        !            86: *>          the corresponding elements of A, and if UPLO = 'L', the
        !            87: *>          diagonal and first subdiagonal of T overwrite the
        !            88: *>          corresponding elements of A.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[out] W
        !            92: *> \verbatim
        !            93: *>          W is DOUBLE PRECISION array, dimension (N)
        !            94: *>          If INFO = 0, the eigenvalues in ascending order.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[out] Z
        !            98: *> \verbatim
        !            99: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
        !           100: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
        !           101: *>          eigenvectors of the matrix A, with the i-th column of Z
        !           102: *>          holding the eigenvector associated with W(i).
        !           103: *>          If JOBZ = 'N', then Z is not referenced.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] LDZ
        !           107: *> \verbatim
        !           108: *>          LDZ is INTEGER
        !           109: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           110: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] WORK
        !           114: *> \verbatim
        !           115: *>          WORK is DOUBLE PRECISION array,
        !           116: *>                                         dimension (LWORK)
        !           117: *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in] LWORK
        !           121: *> \verbatim
        !           122: *>          LWORK is INTEGER
        !           123: *>          The dimension of the array WORK.
        !           124: *>          If N <= 1,               LWORK must be at least 1.
        !           125: *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
        !           126: *>          If JOBZ = 'V' and N > 1, LWORK must be at least
        !           127: *>                                                 1 + 6*N + N**2.
        !           128: *>
        !           129: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           130: *>          only calculates the required sizes of the WORK and IWORK
        !           131: *>          arrays, returns these values as the first entries of the WORK
        !           132: *>          and IWORK arrays, and no error message related to LWORK or
        !           133: *>          LIWORK is issued by XERBLA.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] IWORK
        !           137: *> \verbatim
        !           138: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           139: *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LIWORK
        !           143: *> \verbatim
        !           144: *>          LIWORK is INTEGER
        !           145: *>          The dimension of the array IWORK.
        !           146: *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
        !           147: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
        !           148: *>
        !           149: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           150: *>          routine only calculates the required sizes of the WORK and
        !           151: *>          IWORK arrays, returns these values as the first entries of
        !           152: *>          the WORK and IWORK arrays, and no error message related to
        !           153: *>          LWORK or LIWORK is issued by XERBLA.
        !           154: *> \endverbatim
        !           155: *>
        !           156: *> \param[out] INFO
        !           157: *> \verbatim
        !           158: *>          INFO is INTEGER
        !           159: *>          = 0:  successful exit
        !           160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           161: *>          > 0:  if INFO = i, the algorithm failed to converge; i
        !           162: *>                off-diagonal elements of an intermediate tridiagonal
        !           163: *>                form did not converge to zero.
        !           164: *> \endverbatim
        !           165: *
        !           166: *  Authors:
        !           167: *  ========
        !           168: *
        !           169: *> \author Univ. of Tennessee 
        !           170: *> \author Univ. of California Berkeley 
        !           171: *> \author Univ. of Colorado Denver 
        !           172: *> \author NAG Ltd. 
        !           173: *
        !           174: *> \date November 2011
        !           175: *
        !           176: *> \ingroup doubleOTHEReigen
        !           177: *
        !           178: *  =====================================================================
1.1       bertrand  179:       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
                    180:      $                   IWORK, LIWORK, INFO )
                    181: *
1.8     ! bertrand  182: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  183: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    184: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  185: *     November 2011
1.1       bertrand  186: *
                    187: *     .. Scalar Arguments ..
                    188:       CHARACTER          JOBZ, UPLO
                    189:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                    190: *     ..
                    191: *     .. Array Arguments ..
                    192:       INTEGER            IWORK( * )
                    193:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                    194: *     ..
                    195: *
                    196: *  =====================================================================
                    197: *
                    198: *     .. Parameters ..
                    199:       DOUBLE PRECISION   ZERO, ONE
                    200:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    201: *     ..
                    202: *     .. Local Scalars ..
                    203:       LOGICAL            LQUERY, WANTZ
                    204:       INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
                    205:      $                   LLWORK, LWMIN
                    206:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    207:      $                   SMLNUM
                    208: *     ..
                    209: *     .. External Functions ..
                    210:       LOGICAL            LSAME
                    211:       DOUBLE PRECISION   DLAMCH, DLANSP
                    212:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    213: *     ..
                    214: *     .. External Subroutines ..
                    215:       EXTERNAL           DOPMTR, DSCAL, DSPTRD, DSTEDC, DSTERF, XERBLA
                    216: *     ..
                    217: *     .. Intrinsic Functions ..
                    218:       INTRINSIC          SQRT
                    219: *     ..
                    220: *     .. Executable Statements ..
                    221: *
                    222: *     Test the input parameters.
                    223: *
                    224:       WANTZ = LSAME( JOBZ, 'V' )
                    225:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    226: *
                    227:       INFO = 0
                    228:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    229:          INFO = -1
                    230:       ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
                    231:      $          THEN
                    232:          INFO = -2
                    233:       ELSE IF( N.LT.0 ) THEN
                    234:          INFO = -3
                    235:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    236:          INFO = -7
                    237:       END IF
                    238: *
                    239:       IF( INFO.EQ.0 ) THEN
                    240:          IF( N.LE.1 ) THEN
                    241:             LIWMIN = 1
                    242:             LWMIN = 1
                    243:          ELSE
                    244:             IF( WANTZ ) THEN
                    245:                LIWMIN = 3 + 5*N
                    246:                LWMIN = 1 + 6*N + N**2
                    247:             ELSE
                    248:                LIWMIN = 1
                    249:                LWMIN = 2*N
                    250:             END IF
                    251:          END IF
                    252:          IWORK( 1 ) = LIWMIN
                    253:          WORK( 1 ) = LWMIN
                    254: *
                    255:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    256:             INFO = -9
                    257:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    258:             INFO = -11
                    259:          END IF
                    260:       END IF
                    261: *
                    262:       IF( INFO.NE.0 ) THEN
                    263:          CALL XERBLA( 'DSPEVD', -INFO )
                    264:          RETURN
                    265:       ELSE IF( LQUERY ) THEN
                    266:          RETURN
                    267:       END IF
                    268: *
                    269: *     Quick return if possible
                    270: *
                    271:       IF( N.EQ.0 )
                    272:      $   RETURN
                    273: *
                    274:       IF( N.EQ.1 ) THEN
                    275:          W( 1 ) = AP( 1 )
                    276:          IF( WANTZ )
                    277:      $      Z( 1, 1 ) = ONE
                    278:          RETURN
                    279:       END IF
                    280: *
                    281: *     Get machine constants.
                    282: *
                    283:       SAFMIN = DLAMCH( 'Safe minimum' )
                    284:       EPS = DLAMCH( 'Precision' )
                    285:       SMLNUM = SAFMIN / EPS
                    286:       BIGNUM = ONE / SMLNUM
                    287:       RMIN = SQRT( SMLNUM )
                    288:       RMAX = SQRT( BIGNUM )
                    289: *
                    290: *     Scale matrix to allowable range, if necessary.
                    291: *
                    292:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    293:       ISCALE = 0
                    294:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    295:          ISCALE = 1
                    296:          SIGMA = RMIN / ANRM
                    297:       ELSE IF( ANRM.GT.RMAX ) THEN
                    298:          ISCALE = 1
                    299:          SIGMA = RMAX / ANRM
                    300:       END IF
                    301:       IF( ISCALE.EQ.1 ) THEN
                    302:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    303:       END IF
                    304: *
                    305: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    306: *
                    307:       INDE = 1
                    308:       INDTAU = INDE + N
                    309:       CALL DSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
                    310: *
                    311: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    312: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    313: *     tridiagonal matrix, then call DOPMTR to multiply it by the
                    314: *     Householder transformations represented in AP.
                    315: *
                    316:       IF( .NOT.WANTZ ) THEN
                    317:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    318:       ELSE
                    319:          INDWRK = INDTAU + N
                    320:          LLWORK = LWORK - INDWRK + 1
                    321:          CALL DSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    322:      $                LLWORK, IWORK, LIWORK, INFO )
                    323:          CALL DOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
                    324:      $                WORK( INDWRK ), IINFO )
                    325:       END IF
                    326: *
                    327: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    328: *
                    329:       IF( ISCALE.EQ.1 )
                    330:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    331: *
                    332:       WORK( 1 ) = LWMIN
                    333:       IWORK( 1 ) = LIWMIN
                    334:       RETURN
                    335: *
                    336: *     End of DSPEVD
                    337: *
                    338:       END

CVSweb interface <joel.bertrand@systella.fr>