Annotation of rpl/lapack/lapack/dspevd.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
                      2:      $                   IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DSPEVD computes all the eigenvalues and, optionally, eigenvectors
                     22: *  of a real symmetric matrix A in packed storage. If eigenvectors are
                     23: *  desired, it uses a divide and conquer algorithm.
                     24: *
                     25: *  The divide and conquer algorithm makes very mild assumptions about
                     26: *  floating point arithmetic. It will work on machines with a guard
                     27: *  digit in add/subtract, or on those binary machines without guard
                     28: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     29: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     30: *  without guard digits, but we know of none.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  JOBZ    (input) CHARACTER*1
                     36: *          = 'N':  Compute eigenvalues only;
                     37: *          = 'V':  Compute eigenvalues and eigenvectors.
                     38: *
                     39: *  UPLO    (input) CHARACTER*1
                     40: *          = 'U':  Upper triangle of A is stored;
                     41: *          = 'L':  Lower triangle of A is stored.
                     42: *
                     43: *  N       (input) INTEGER
                     44: *          The order of the matrix A.  N >= 0.
                     45: *
                     46: *  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     47: *          On entry, the upper or lower triangle of the symmetric matrix
                     48: *          A, packed columnwise in a linear array.  The j-th column of A
                     49: *          is stored in the array AP as follows:
                     50: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     51: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     52: *
                     53: *          On exit, AP is overwritten by values generated during the
                     54: *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     55: *          and first superdiagonal of the tridiagonal matrix T overwrite
                     56: *          the corresponding elements of A, and if UPLO = 'L', the
                     57: *          diagonal and first subdiagonal of T overwrite the
                     58: *          corresponding elements of A.
                     59: *
                     60: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     61: *          If INFO = 0, the eigenvalues in ascending order.
                     62: *
                     63: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
                     64: *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                     65: *          eigenvectors of the matrix A, with the i-th column of Z
                     66: *          holding the eigenvector associated with W(i).
                     67: *          If JOBZ = 'N', then Z is not referenced.
                     68: *
                     69: *  LDZ     (input) INTEGER
                     70: *          The leading dimension of the array Z.  LDZ >= 1, and if
                     71: *          JOBZ = 'V', LDZ >= max(1,N).
                     72: *
                     73: *  WORK    (workspace/output) DOUBLE PRECISION array,
                     74: *                                         dimension (LWORK)
                     75: *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                     76: *
                     77: *  LWORK   (input) INTEGER
                     78: *          The dimension of the array WORK.
                     79: *          If N <= 1,               LWORK must be at least 1.
                     80: *          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
                     81: *          If JOBZ = 'V' and N > 1, LWORK must be at least
                     82: *                                                 1 + 6*N + N**2.
                     83: *
                     84: *          If LWORK = -1, then a workspace query is assumed; the routine
                     85: *          only calculates the required sizes of the WORK and IWORK
                     86: *          arrays, returns these values as the first entries of the WORK
                     87: *          and IWORK arrays, and no error message related to LWORK or
                     88: *          LIWORK is issued by XERBLA.
                     89: *
                     90: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     91: *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                     92: *
                     93: *  LIWORK  (input) INTEGER
                     94: *          The dimension of the array IWORK.
                     95: *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                     96: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                     97: *
                     98: *          If LIWORK = -1, then a workspace query is assumed; the
                     99: *          routine only calculates the required sizes of the WORK and
                    100: *          IWORK arrays, returns these values as the first entries of
                    101: *          the WORK and IWORK arrays, and no error message related to
                    102: *          LWORK or LIWORK is issued by XERBLA.
                    103: *
                    104: *  INFO    (output) INTEGER
                    105: *          = 0:  successful exit
                    106: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    107: *          > 0:  if INFO = i, the algorithm failed to converge; i
                    108: *                off-diagonal elements of an intermediate tridiagonal
                    109: *                form did not converge to zero.
                    110: *
                    111: *  =====================================================================
                    112: *
                    113: *     .. Parameters ..
                    114:       DOUBLE PRECISION   ZERO, ONE
                    115:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    116: *     ..
                    117: *     .. Local Scalars ..
                    118:       LOGICAL            LQUERY, WANTZ
                    119:       INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
                    120:      $                   LLWORK, LWMIN
                    121:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    122:      $                   SMLNUM
                    123: *     ..
                    124: *     .. External Functions ..
                    125:       LOGICAL            LSAME
                    126:       DOUBLE PRECISION   DLAMCH, DLANSP
                    127:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    128: *     ..
                    129: *     .. External Subroutines ..
                    130:       EXTERNAL           DOPMTR, DSCAL, DSPTRD, DSTEDC, DSTERF, XERBLA
                    131: *     ..
                    132: *     .. Intrinsic Functions ..
                    133:       INTRINSIC          SQRT
                    134: *     ..
                    135: *     .. Executable Statements ..
                    136: *
                    137: *     Test the input parameters.
                    138: *
                    139:       WANTZ = LSAME( JOBZ, 'V' )
                    140:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    141: *
                    142:       INFO = 0
                    143:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    144:          INFO = -1
                    145:       ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
                    146:      $          THEN
                    147:          INFO = -2
                    148:       ELSE IF( N.LT.0 ) THEN
                    149:          INFO = -3
                    150:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    151:          INFO = -7
                    152:       END IF
                    153: *
                    154:       IF( INFO.EQ.0 ) THEN
                    155:          IF( N.LE.1 ) THEN
                    156:             LIWMIN = 1
                    157:             LWMIN = 1
                    158:          ELSE
                    159:             IF( WANTZ ) THEN
                    160:                LIWMIN = 3 + 5*N
                    161:                LWMIN = 1 + 6*N + N**2
                    162:             ELSE
                    163:                LIWMIN = 1
                    164:                LWMIN = 2*N
                    165:             END IF
                    166:          END IF
                    167:          IWORK( 1 ) = LIWMIN
                    168:          WORK( 1 ) = LWMIN
                    169: *
                    170:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    171:             INFO = -9
                    172:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    173:             INFO = -11
                    174:          END IF
                    175:       END IF
                    176: *
                    177:       IF( INFO.NE.0 ) THEN
                    178:          CALL XERBLA( 'DSPEVD', -INFO )
                    179:          RETURN
                    180:       ELSE IF( LQUERY ) THEN
                    181:          RETURN
                    182:       END IF
                    183: *
                    184: *     Quick return if possible
                    185: *
                    186:       IF( N.EQ.0 )
                    187:      $   RETURN
                    188: *
                    189:       IF( N.EQ.1 ) THEN
                    190:          W( 1 ) = AP( 1 )
                    191:          IF( WANTZ )
                    192:      $      Z( 1, 1 ) = ONE
                    193:          RETURN
                    194:       END IF
                    195: *
                    196: *     Get machine constants.
                    197: *
                    198:       SAFMIN = DLAMCH( 'Safe minimum' )
                    199:       EPS = DLAMCH( 'Precision' )
                    200:       SMLNUM = SAFMIN / EPS
                    201:       BIGNUM = ONE / SMLNUM
                    202:       RMIN = SQRT( SMLNUM )
                    203:       RMAX = SQRT( BIGNUM )
                    204: *
                    205: *     Scale matrix to allowable range, if necessary.
                    206: *
                    207:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    208:       ISCALE = 0
                    209:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    210:          ISCALE = 1
                    211:          SIGMA = RMIN / ANRM
                    212:       ELSE IF( ANRM.GT.RMAX ) THEN
                    213:          ISCALE = 1
                    214:          SIGMA = RMAX / ANRM
                    215:       END IF
                    216:       IF( ISCALE.EQ.1 ) THEN
                    217:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    218:       END IF
                    219: *
                    220: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    221: *
                    222:       INDE = 1
                    223:       INDTAU = INDE + N
                    224:       CALL DSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
                    225: *
                    226: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    227: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    228: *     tridiagonal matrix, then call DOPMTR to multiply it by the
                    229: *     Householder transformations represented in AP.
                    230: *
                    231:       IF( .NOT.WANTZ ) THEN
                    232:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    233:       ELSE
                    234:          INDWRK = INDTAU + N
                    235:          LLWORK = LWORK - INDWRK + 1
                    236:          CALL DSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    237:      $                LLWORK, IWORK, LIWORK, INFO )
                    238:          CALL DOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
                    239:      $                WORK( INDWRK ), IINFO )
                    240:       END IF
                    241: *
                    242: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    243: *
                    244:       IF( ISCALE.EQ.1 )
                    245:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    246: *
                    247:       WORK( 1 ) = LWMIN
                    248:       IWORK( 1 ) = LIWMIN
                    249:       RETURN
                    250: *
                    251: *     End of DSPEVD
                    252: *
                    253:       END

CVSweb interface <joel.bertrand@systella.fr>