Annotation of rpl/lapack/lapack/dspevd.f, revision 1.18

1.8       bertrand    1: *> \brief <b> DSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DSPEVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevd.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
                     22: *                          IWORK, LIWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                     31: *       ..
1.14      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSPEVD computes all the eigenvalues and, optionally, eigenvectors
                     40: *> of a real symmetric matrix A in packed storage. If eigenvectors are
                     41: *> desired, it uses a divide and conquer algorithm.
                     42: *>
                     43: *> The divide and conquer algorithm makes very mild assumptions about
                     44: *> floating point arithmetic. It will work on machines with a guard
                     45: *> digit in add/subtract, or on those binary machines without guard
                     46: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     47: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     48: *> without guard digits, but we know of none.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] JOBZ
                     55: *> \verbatim
                     56: *>          JOBZ is CHARACTER*1
                     57: *>          = 'N':  Compute eigenvalues only;
                     58: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] UPLO
                     62: *> \verbatim
                     63: *>          UPLO is CHARACTER*1
                     64: *>          = 'U':  Upper triangle of A is stored;
                     65: *>          = 'L':  Lower triangle of A is stored.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] AP
                     75: *> \verbatim
                     76: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
                     77: *>          On entry, the upper or lower triangle of the symmetric matrix
                     78: *>          A, packed columnwise in a linear array.  The j-th column of A
                     79: *>          is stored in the array AP as follows:
                     80: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     81: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     82: *>
                     83: *>          On exit, AP is overwritten by values generated during the
                     84: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
                     85: *>          and first superdiagonal of the tridiagonal matrix T overwrite
                     86: *>          the corresponding elements of A, and if UPLO = 'L', the
                     87: *>          diagonal and first subdiagonal of T overwrite the
                     88: *>          corresponding elements of A.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] W
                     92: *> \verbatim
                     93: *>          W is DOUBLE PRECISION array, dimension (N)
                     94: *>          If INFO = 0, the eigenvalues in ascending order.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[out] Z
                     98: *> \verbatim
                     99: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    100: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    101: *>          eigenvectors of the matrix A, with the i-th column of Z
                    102: *>          holding the eigenvector associated with W(i).
                    103: *>          If JOBZ = 'N', then Z is not referenced.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDZ
                    107: *> \verbatim
                    108: *>          LDZ is INTEGER
                    109: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    110: *>          JOBZ = 'V', LDZ >= max(1,N).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] WORK
                    114: *> \verbatim
1.16      bertrand  115: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1.8       bertrand  116: *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] LWORK
                    120: *> \verbatim
                    121: *>          LWORK is INTEGER
                    122: *>          The dimension of the array WORK.
                    123: *>          If N <= 1,               LWORK must be at least 1.
                    124: *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
                    125: *>          If JOBZ = 'V' and N > 1, LWORK must be at least
                    126: *>                                                 1 + 6*N + N**2.
                    127: *>
                    128: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    129: *>          only calculates the required sizes of the WORK and IWORK
                    130: *>          arrays, returns these values as the first entries of the WORK
                    131: *>          and IWORK arrays, and no error message related to LWORK or
                    132: *>          LIWORK is issued by XERBLA.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] IWORK
                    136: *> \verbatim
                    137: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    138: *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] LIWORK
                    142: *> \verbatim
                    143: *>          LIWORK is INTEGER
                    144: *>          The dimension of the array IWORK.
                    145: *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
                    146: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                    147: *>
                    148: *>          If LIWORK = -1, then a workspace query is assumed; the
                    149: *>          routine only calculates the required sizes of the WORK and
                    150: *>          IWORK arrays, returns these values as the first entries of
                    151: *>          the WORK and IWORK arrays, and no error message related to
                    152: *>          LWORK or LIWORK is issued by XERBLA.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] INFO
                    156: *> \verbatim
                    157: *>          INFO is INTEGER
                    158: *>          = 0:  successful exit
                    159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    160: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    161: *>                off-diagonal elements of an intermediate tridiagonal
                    162: *>                form did not converge to zero.
                    163: *> \endverbatim
                    164: *
                    165: *  Authors:
                    166: *  ========
                    167: *
1.14      bertrand  168: *> \author Univ. of Tennessee
                    169: *> \author Univ. of California Berkeley
                    170: *> \author Univ. of Colorado Denver
                    171: *> \author NAG Ltd.
1.8       bertrand  172: *
                    173: *> \ingroup doubleOTHEReigen
                    174: *
                    175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
                    177:      $                   IWORK, LIWORK, INFO )
                    178: *
1.18    ! bertrand  179: *  -- LAPACK driver routine --
1.1       bertrand  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    182: *
                    183: *     .. Scalar Arguments ..
                    184:       CHARACTER          JOBZ, UPLO
                    185:       INTEGER            INFO, LDZ, LIWORK, LWORK, N
                    186: *     ..
                    187: *     .. Array Arguments ..
                    188:       INTEGER            IWORK( * )
                    189:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
                    190: *     ..
                    191: *
                    192: *  =====================================================================
                    193: *
                    194: *     .. Parameters ..
                    195:       DOUBLE PRECISION   ZERO, ONE
                    196:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    197: *     ..
                    198: *     .. Local Scalars ..
                    199:       LOGICAL            LQUERY, WANTZ
                    200:       INTEGER            IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
                    201:      $                   LLWORK, LWMIN
                    202:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    203:      $                   SMLNUM
                    204: *     ..
                    205: *     .. External Functions ..
                    206:       LOGICAL            LSAME
                    207:       DOUBLE PRECISION   DLAMCH, DLANSP
                    208:       EXTERNAL           LSAME, DLAMCH, DLANSP
                    209: *     ..
                    210: *     .. External Subroutines ..
                    211:       EXTERNAL           DOPMTR, DSCAL, DSPTRD, DSTEDC, DSTERF, XERBLA
                    212: *     ..
                    213: *     .. Intrinsic Functions ..
                    214:       INTRINSIC          SQRT
                    215: *     ..
                    216: *     .. Executable Statements ..
                    217: *
                    218: *     Test the input parameters.
                    219: *
                    220:       WANTZ = LSAME( JOBZ, 'V' )
                    221:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    222: *
                    223:       INFO = 0
                    224:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    225:          INFO = -1
                    226:       ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
                    227:      $          THEN
                    228:          INFO = -2
                    229:       ELSE IF( N.LT.0 ) THEN
                    230:          INFO = -3
                    231:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    232:          INFO = -7
                    233:       END IF
                    234: *
                    235:       IF( INFO.EQ.0 ) THEN
                    236:          IF( N.LE.1 ) THEN
                    237:             LIWMIN = 1
                    238:             LWMIN = 1
                    239:          ELSE
                    240:             IF( WANTZ ) THEN
                    241:                LIWMIN = 3 + 5*N
                    242:                LWMIN = 1 + 6*N + N**2
                    243:             ELSE
                    244:                LIWMIN = 1
                    245:                LWMIN = 2*N
                    246:             END IF
                    247:          END IF
                    248:          IWORK( 1 ) = LIWMIN
                    249:          WORK( 1 ) = LWMIN
                    250: *
                    251:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    252:             INFO = -9
                    253:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    254:             INFO = -11
                    255:          END IF
                    256:       END IF
                    257: *
                    258:       IF( INFO.NE.0 ) THEN
                    259:          CALL XERBLA( 'DSPEVD', -INFO )
                    260:          RETURN
                    261:       ELSE IF( LQUERY ) THEN
                    262:          RETURN
                    263:       END IF
                    264: *
                    265: *     Quick return if possible
                    266: *
                    267:       IF( N.EQ.0 )
                    268:      $   RETURN
                    269: *
                    270:       IF( N.EQ.1 ) THEN
                    271:          W( 1 ) = AP( 1 )
                    272:          IF( WANTZ )
                    273:      $      Z( 1, 1 ) = ONE
                    274:          RETURN
                    275:       END IF
                    276: *
                    277: *     Get machine constants.
                    278: *
                    279:       SAFMIN = DLAMCH( 'Safe minimum' )
                    280:       EPS = DLAMCH( 'Precision' )
                    281:       SMLNUM = SAFMIN / EPS
                    282:       BIGNUM = ONE / SMLNUM
                    283:       RMIN = SQRT( SMLNUM )
                    284:       RMAX = SQRT( BIGNUM )
                    285: *
                    286: *     Scale matrix to allowable range, if necessary.
                    287: *
                    288:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
                    289:       ISCALE = 0
                    290:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    291:          ISCALE = 1
                    292:          SIGMA = RMIN / ANRM
                    293:       ELSE IF( ANRM.GT.RMAX ) THEN
                    294:          ISCALE = 1
                    295:          SIGMA = RMAX / ANRM
                    296:       END IF
                    297:       IF( ISCALE.EQ.1 ) THEN
                    298:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
                    299:       END IF
                    300: *
                    301: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
                    302: *
                    303:       INDE = 1
                    304:       INDTAU = INDE + N
                    305:       CALL DSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
                    306: *
                    307: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    308: *     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    309: *     tridiagonal matrix, then call DOPMTR to multiply it by the
                    310: *     Householder transformations represented in AP.
                    311: *
                    312:       IF( .NOT.WANTZ ) THEN
                    313:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    314:       ELSE
                    315:          INDWRK = INDTAU + N
                    316:          LLWORK = LWORK - INDWRK + 1
                    317:          CALL DSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    318:      $                LLWORK, IWORK, LIWORK, INFO )
                    319:          CALL DOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
                    320:      $                WORK( INDWRK ), IINFO )
                    321:       END IF
                    322: *
                    323: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    324: *
                    325:       IF( ISCALE.EQ.1 )
                    326:      $   CALL DSCAL( N, ONE / SIGMA, W, 1 )
                    327: *
                    328:       WORK( 1 ) = LWMIN
                    329:       IWORK( 1 ) = LIWMIN
                    330:       RETURN
                    331: *
                    332: *     End of DSPEVD
                    333: *
                    334:       END

CVSweb interface <joel.bertrand@systella.fr>