File:  [local] / rpl / lapack / lapack / dspev.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:37 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief <b> DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSPEV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspev.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspev.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspev.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          JOBZ, UPLO
   25: *       INTEGER            INFO, LDZ, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DSPEV computes all the eigenvalues and, optionally, eigenvectors of a
   38: *> real symmetric matrix A in packed storage.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] JOBZ
   45: *> \verbatim
   46: *>          JOBZ is CHARACTER*1
   47: *>          = 'N':  Compute eigenvalues only;
   48: *>          = 'V':  Compute eigenvalues and eigenvectors.
   49: *> \endverbatim
   50: *>
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] AP
   65: *> \verbatim
   66: *>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
   67: *>          On entry, the upper or lower triangle of the symmetric matrix
   68: *>          A, packed columnwise in a linear array.  The j-th column of A
   69: *>          is stored in the array AP as follows:
   70: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   71: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   72: *>
   73: *>          On exit, AP is overwritten by values generated during the
   74: *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
   75: *>          and first superdiagonal of the tridiagonal matrix T overwrite
   76: *>          the corresponding elements of A, and if UPLO = 'L', the
   77: *>          diagonal and first subdiagonal of T overwrite the
   78: *>          corresponding elements of A.
   79: *> \endverbatim
   80: *>
   81: *> \param[out] W
   82: *> \verbatim
   83: *>          W is DOUBLE PRECISION array, dimension (N)
   84: *>          If INFO = 0, the eigenvalues in ascending order.
   85: *> \endverbatim
   86: *>
   87: *> \param[out] Z
   88: *> \verbatim
   89: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
   90: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
   91: *>          eigenvectors of the matrix A, with the i-th column of Z
   92: *>          holding the eigenvector associated with W(i).
   93: *>          If JOBZ = 'N', then Z is not referenced.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] LDZ
   97: *> \verbatim
   98: *>          LDZ is INTEGER
   99: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  100: *>          JOBZ = 'V', LDZ >= max(1,N).
  101: *> \endverbatim
  102: *>
  103: *> \param[out] WORK
  104: *> \verbatim
  105: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit.
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  113: *>          > 0:  if INFO = i, the algorithm failed to converge; i
  114: *>                off-diagonal elements of an intermediate tridiagonal
  115: *>                form did not converge to zero.
  116: *> \endverbatim
  117: *
  118: *  Authors:
  119: *  ========
  120: *
  121: *> \author Univ. of Tennessee 
  122: *> \author Univ. of California Berkeley 
  123: *> \author Univ. of Colorado Denver 
  124: *> \author NAG Ltd. 
  125: *
  126: *> \date November 2011
  127: *
  128: *> \ingroup doubleOTHEReigen
  129: *
  130: *  =====================================================================
  131:       SUBROUTINE DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
  132: *
  133: *  -- LAPACK driver routine (version 3.4.0) --
  134: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  135: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136: *     November 2011
  137: *
  138: *     .. Scalar Arguments ..
  139:       CHARACTER          JOBZ, UPLO
  140:       INTEGER            INFO, LDZ, N
  141: *     ..
  142: *     .. Array Arguments ..
  143:       DOUBLE PRECISION   AP( * ), W( * ), WORK( * ), Z( LDZ, * )
  144: *     ..
  145: *
  146: *  =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       DOUBLE PRECISION   ZERO, ONE
  150:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       LOGICAL            WANTZ
  154:       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE
  155:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  156:      $                   SMLNUM
  157: *     ..
  158: *     .. External Functions ..
  159:       LOGICAL            LSAME
  160:       DOUBLE PRECISION   DLAMCH, DLANSP
  161:       EXTERNAL           LSAME, DLAMCH, DLANSP
  162: *     ..
  163: *     .. External Subroutines ..
  164:       EXTERNAL           DOPGTR, DSCAL, DSPTRD, DSTEQR, DSTERF, XERBLA
  165: *     ..
  166: *     .. Intrinsic Functions ..
  167:       INTRINSIC          SQRT
  168: *     ..
  169: *     .. Executable Statements ..
  170: *
  171: *     Test the input parameters.
  172: *
  173:       WANTZ = LSAME( JOBZ, 'V' )
  174: *
  175:       INFO = 0
  176:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  177:          INFO = -1
  178:       ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
  179:      $          THEN
  180:          INFO = -2
  181:       ELSE IF( N.LT.0 ) THEN
  182:          INFO = -3
  183:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  184:          INFO = -7
  185:       END IF
  186: *
  187:       IF( INFO.NE.0 ) THEN
  188:          CALL XERBLA( 'DSPEV ', -INFO )
  189:          RETURN
  190:       END IF
  191: *
  192: *     Quick return if possible
  193: *
  194:       IF( N.EQ.0 )
  195:      $   RETURN
  196: *
  197:       IF( N.EQ.1 ) THEN
  198:          W( 1 ) = AP( 1 )
  199:          IF( WANTZ )
  200:      $      Z( 1, 1 ) = ONE
  201:          RETURN
  202:       END IF
  203: *
  204: *     Get machine constants.
  205: *
  206:       SAFMIN = DLAMCH( 'Safe minimum' )
  207:       EPS = DLAMCH( 'Precision' )
  208:       SMLNUM = SAFMIN / EPS
  209:       BIGNUM = ONE / SMLNUM
  210:       RMIN = SQRT( SMLNUM )
  211:       RMAX = SQRT( BIGNUM )
  212: *
  213: *     Scale matrix to allowable range, if necessary.
  214: *
  215:       ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
  216:       ISCALE = 0
  217:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  218:          ISCALE = 1
  219:          SIGMA = RMIN / ANRM
  220:       ELSE IF( ANRM.GT.RMAX ) THEN
  221:          ISCALE = 1
  222:          SIGMA = RMAX / ANRM
  223:       END IF
  224:       IF( ISCALE.EQ.1 ) THEN
  225:          CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
  226:       END IF
  227: *
  228: *     Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
  229: *
  230:       INDE = 1
  231:       INDTAU = INDE + N
  232:       CALL DSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
  233: *
  234: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
  235: *     DOPGTR to generate the orthogonal matrix, then call DSTEQR.
  236: *
  237:       IF( .NOT.WANTZ ) THEN
  238:          CALL DSTERF( N, W, WORK( INDE ), INFO )
  239:       ELSE
  240:          INDWRK = INDTAU + N
  241:          CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
  242:      $                WORK( INDWRK ), IINFO )
  243:          CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDTAU ),
  244:      $                INFO )
  245:       END IF
  246: *
  247: *     If matrix was scaled, then rescale eigenvalues appropriately.
  248: *
  249:       IF( ISCALE.EQ.1 ) THEN
  250:          IF( INFO.EQ.0 ) THEN
  251:             IMAX = N
  252:          ELSE
  253:             IMAX = INFO - 1
  254:          END IF
  255:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  256:       END IF
  257: *
  258:       RETURN
  259: *
  260: *     End of DSPEV
  261: *
  262:       END

CVSweb interface <joel.bertrand@systella.fr>