Annotation of rpl/lapack/lapack/dsgesv.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
                      2:      +                   SWORK, ITER, INFO )
                      3: *
1.5       bertrand    4: *  -- LAPACK PROTOTYPE driver routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     February 2007
                      8: *
                      9: *     ..
                     10: *     .. Scalar Arguments ..
                     11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IPIV( * )
                     15:       REAL               SWORK( * )
                     16:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     17:      +                   X( LDX, * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  DSGESV computes the solution to a real system of linear equations
                     24: *     A * X = B,
                     25: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     26: *
                     27: *  DSGESV first attempts to factorize the matrix in SINGLE PRECISION
                     28: *  and use this factorization within an iterative refinement procedure
                     29: *  to produce a solution with DOUBLE PRECISION normwise backward error
                     30: *  quality (see below). If the approach fails the method switches to a
                     31: *  DOUBLE PRECISION factorization and solve.
                     32: *
                     33: *  The iterative refinement is not going to be a winning strategy if
                     34: *  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
                     35: *  performance is too small. A reasonable strategy should take the
                     36: *  number of right-hand sides and the size of the matrix into account.
                     37: *  This might be done with a call to ILAENV in the future. Up to now, we
                     38: *  always try iterative refinement.
                     39: *
                     40: *  The iterative refinement process is stopped if
                     41: *      ITER > ITERMAX
                     42: *  or for all the RHS we have:
                     43: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     44: *  where
                     45: *      o ITER is the number of the current iteration in the iterative
                     46: *        refinement process
                     47: *      o RNRM is the infinity-norm of the residual
                     48: *      o XNRM is the infinity-norm of the solution
                     49: *      o ANRM is the infinity-operator-norm of the matrix A
                     50: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     51: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     52: *  respectively.
                     53: *
                     54: *  Arguments
                     55: *  =========
                     56: *
                     57: *  N       (input) INTEGER
                     58: *          The number of linear equations, i.e., the order of the
                     59: *          matrix A.  N >= 0.
                     60: *
                     61: *  NRHS    (input) INTEGER
                     62: *          The number of right hand sides, i.e., the number of columns
                     63: *          of the matrix B.  NRHS >= 0.
                     64: *
1.5       bertrand   65: *  A       (input/output) DOUBLE PRECISION array,
1.1       bertrand   66: *          dimension (LDA,N)
                     67: *          On entry, the N-by-N coefficient matrix A.
                     68: *          On exit, if iterative refinement has been successfully used
                     69: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     70: *          unchanged, if double precision factorization has been used
                     71: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     72: *          array A contains the factors L and U from the factorization
                     73: *          A = P*L*U; the unit diagonal elements of L are not stored.
                     74: *
                     75: *  LDA     (input) INTEGER
                     76: *          The leading dimension of the array A.  LDA >= max(1,N).
                     77: *
                     78: *  IPIV    (output) INTEGER array, dimension (N)
                     79: *          The pivot indices that define the permutation matrix P;
                     80: *          row i of the matrix was interchanged with row IPIV(i).
                     81: *          Corresponds either to the single precision factorization
                     82: *          (if INFO.EQ.0 and ITER.GE.0) or the double precision
                     83: *          factorization (if INFO.EQ.0 and ITER.LT.0).
                     84: *
                     85: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     86: *          The N-by-NRHS right hand side matrix B.
                     87: *
                     88: *  LDB     (input) INTEGER
                     89: *          The leading dimension of the array B.  LDB >= max(1,N).
                     90: *
                     91: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                     92: *          If INFO = 0, the N-by-NRHS solution matrix X.
                     93: *
                     94: *  LDX     (input) INTEGER
                     95: *          The leading dimension of the array X.  LDX >= max(1,N).
                     96: *
1.5       bertrand   97: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
1.1       bertrand   98: *          This array is used to hold the residual vectors.
                     99: *
                    100: *  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
                    101: *          This array is used to use the single precision matrix and the
                    102: *          right-hand sides or solutions in single precision.
                    103: *
                    104: *  ITER    (output) INTEGER
                    105: *          < 0: iterative refinement has failed, double precision
                    106: *               factorization has been performed
                    107: *               -1 : the routine fell back to full precision for
                    108: *                    implementation- or machine-specific reasons
                    109: *               -2 : narrowing the precision induced an overflow,
                    110: *                    the routine fell back to full precision
                    111: *               -3 : failure of SGETRF
                    112: *               -31: stop the iterative refinement after the 30th
                    113: *                    iterations
                    114: *          > 0: iterative refinement has been sucessfully used.
                    115: *               Returns the number of iterations
                    116: *
                    117: *  INFO    (output) INTEGER
                    118: *          = 0:  successful exit
                    119: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    120: *          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
                    121: *                exactly zero.  The factorization has been completed,
                    122: *                but the factor U is exactly singular, so the solution
                    123: *                could not be computed.
                    124: *
                    125: *  =========
                    126: *
                    127: *     .. Parameters ..
                    128:       LOGICAL            DOITREF
                    129:       PARAMETER          ( DOITREF = .TRUE. )
                    130: *
                    131:       INTEGER            ITERMAX
                    132:       PARAMETER          ( ITERMAX = 30 )
                    133: *
                    134:       DOUBLE PRECISION   BWDMAX
                    135:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    136: *
                    137:       DOUBLE PRECISION   NEGONE, ONE
                    138:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
                    139: *
                    140: *     .. Local Scalars ..
                    141:       INTEGER            I, IITER, PTSA, PTSX
                    142:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    143: *
                    144: *     .. External Subroutines ..
                    145:       EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, SLAG2D, SGETRF,
                    146:      +                   SGETRS, XERBLA
                    147: *     ..
                    148: *     .. External Functions ..
                    149:       INTEGER            IDAMAX
                    150:       DOUBLE PRECISION   DLAMCH, DLANGE
                    151:       EXTERNAL           IDAMAX, DLAMCH, DLANGE
                    152: *     ..
                    153: *     .. Intrinsic Functions ..
                    154:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    155: *     ..
                    156: *     .. Executable Statements ..
                    157: *
                    158:       INFO = 0
                    159:       ITER = 0
                    160: *
                    161: *     Test the input parameters.
                    162: *
                    163:       IF( N.LT.0 ) THEN
                    164:          INFO = -1
                    165:       ELSE IF( NRHS.LT.0 ) THEN
                    166:          INFO = -2
                    167:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    168:          INFO = -4
                    169:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    170:          INFO = -7
                    171:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    172:          INFO = -9
                    173:       END IF
                    174:       IF( INFO.NE.0 ) THEN
                    175:          CALL XERBLA( 'DSGESV', -INFO )
                    176:          RETURN
                    177:       END IF
                    178: *
                    179: *     Quick return if (N.EQ.0).
                    180: *
                    181:       IF( N.EQ.0 )
                    182:      +   RETURN
                    183: *
                    184: *     Skip single precision iterative refinement if a priori slower
                    185: *     than double precision factorization.
                    186: *
                    187:       IF( .NOT.DOITREF ) THEN
                    188:          ITER = -1
                    189:          GO TO 40
                    190:       END IF
                    191: *
                    192: *     Compute some constants.
                    193: *
                    194:       ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
                    195:       EPS = DLAMCH( 'Epsilon' )
                    196:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    197: *
                    198: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    199: *
                    200:       PTSA = 1
                    201:       PTSX = PTSA + N*N
                    202: *
                    203: *     Convert B from double precision to single precision and store the
                    204: *     result in SX.
                    205: *
                    206:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    207: *
                    208:       IF( INFO.NE.0 ) THEN
                    209:          ITER = -2
                    210:          GO TO 40
                    211:       END IF
                    212: *
                    213: *     Convert A from double precision to single precision and store the
                    214: *     result in SA.
                    215: *
                    216:       CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    217: *
                    218:       IF( INFO.NE.0 ) THEN
                    219:          ITER = -2
                    220:          GO TO 40
                    221:       END IF
                    222: *
                    223: *     Compute the LU factorization of SA.
                    224: *
                    225:       CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    226: *
                    227:       IF( INFO.NE.0 ) THEN
                    228:          ITER = -3
                    229:          GO TO 40
                    230:       END IF
                    231: *
                    232: *     Solve the system SA*SX = SB.
                    233: *
                    234:       CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
                    235:      +             SWORK( PTSX ), N, INFO )
                    236: *
                    237: *     Convert SX back to double precision
                    238: *
                    239:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    240: *
                    241: *     Compute R = B - AX (R is WORK).
                    242: *
                    243:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    244: *
                    245:       CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
                    246:      +            LDA, X, LDX, ONE, WORK, N )
                    247: *
                    248: *     Check whether the NRHS normwise backward errors satisfy the
                    249: *     stopping criterion. If yes, set ITER=0 and return.
                    250: *
                    251:       DO I = 1, NRHS
                    252:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    253:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    254:          IF( RNRM.GT.XNRM*CTE )
                    255:      +      GO TO 10
                    256:       END DO
                    257: *
                    258: *     If we are here, the NRHS normwise backward errors satisfy the
                    259: *     stopping criterion. We are good to exit.
                    260: *
                    261:       ITER = 0
                    262:       RETURN
                    263: *
                    264:    10 CONTINUE
                    265: *
                    266:       DO 30 IITER = 1, ITERMAX
                    267: *
                    268: *        Convert R (in WORK) from double precision to single precision
                    269: *        and store the result in SX.
                    270: *
                    271:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    272: *
                    273:          IF( INFO.NE.0 ) THEN
                    274:             ITER = -2
                    275:             GO TO 40
                    276:          END IF
                    277: *
                    278: *        Solve the system SA*SX = SR.
                    279: *
                    280:          CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
                    281:      +                SWORK( PTSX ), N, INFO )
                    282: *
                    283: *        Convert SX back to double precision and update the current
                    284: *        iterate.
                    285: *
                    286:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    287: *
                    288:          DO I = 1, NRHS
                    289:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    290:          END DO
                    291: *
                    292: *        Compute R = B - AX (R is WORK).
                    293: *
                    294:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    295: *
                    296:          CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
                    297:      +               A, LDA, X, LDX, ONE, WORK, N )
                    298: *
                    299: *        Check whether the NRHS normwise backward errors satisfy the
                    300: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    301: *
                    302:          DO I = 1, NRHS
                    303:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    304:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    305:             IF( RNRM.GT.XNRM*CTE )
                    306:      +         GO TO 20
                    307:          END DO
                    308: *
                    309: *        If we are here, the NRHS normwise backward errors satisfy the
                    310: *        stopping criterion, we are good to exit.
                    311: *
                    312:          ITER = IITER
                    313: *
                    314:          RETURN
                    315: *
                    316:    20    CONTINUE
                    317: *
                    318:    30 CONTINUE
                    319: *
                    320: *     If we are at this place of the code, this is because we have
                    321: *     performed ITER=ITERMAX iterations and never satisified the
                    322: *     stopping criterion, set up the ITER flag accordingly and follow up
                    323: *     on double precision routine.
                    324: *
                    325:       ITER = -ITERMAX - 1
                    326: *
                    327:    40 CONTINUE
                    328: *
                    329: *     Single-precision iterative refinement failed to converge to a
                    330: *     satisfactory solution, so we resort to double precision.
                    331: *
                    332:       CALL DGETRF( N, N, A, LDA, IPIV, INFO )
                    333: *
                    334:       IF( INFO.NE.0 )
                    335:      +   RETURN
                    336: *
                    337:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    338:       CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
                    339:      +             INFO )
                    340: *
                    341:       RETURN
                    342: *
                    343: *     End of DSGESV.
                    344: *
                    345:       END

CVSweb interface <joel.bertrand@systella.fr>