Annotation of rpl/lapack/lapack/dsgesv.f, revision 1.20

1.11      bertrand    1: *> \brief <b> DSGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.11      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download DSGESV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsgesv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsgesv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsgesv.f">
1.11      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.11      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
                     22: *                          SWORK, ITER, INFO )
1.17      bertrand   23: *
1.11      bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       REAL               SWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     31: *      $                   X( LDX, * )
                     32: *       ..
1.17      bertrand   33: *
1.11      bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSGESV computes the solution to a real system of linear equations
                     41: *>    A * X = B,
                     42: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     43: *>
                     44: *> DSGESV first attempts to factorize the matrix in SINGLE PRECISION
                     45: *> and use this factorization within an iterative refinement procedure
                     46: *> to produce a solution with DOUBLE PRECISION normwise backward error
                     47: *> quality (see below). If the approach fails the method switches to a
                     48: *> DOUBLE PRECISION factorization and solve.
                     49: *>
                     50: *> The iterative refinement is not going to be a winning strategy if
                     51: *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
                     52: *> performance is too small. A reasonable strategy should take the
                     53: *> number of right-hand sides and the size of the matrix into account.
                     54: *> This might be done with a call to ILAENV in the future. Up to now, we
                     55: *> always try iterative refinement.
                     56: *>
                     57: *> The iterative refinement process is stopped if
                     58: *>     ITER > ITERMAX
                     59: *> or for all the RHS we have:
                     60: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     61: *> where
                     62: *>     o ITER is the number of the current iteration in the iterative
                     63: *>       refinement process
                     64: *>     o RNRM is the infinity-norm of the residual
                     65: *>     o XNRM is the infinity-norm of the solution
                     66: *>     o ANRM is the infinity-operator-norm of the matrix A
                     67: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     68: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     69: *> respectively.
                     70: *> \endverbatim
                     71: *
                     72: *  Arguments:
                     73: *  ==========
                     74: *
                     75: *> \param[in] N
                     76: *> \verbatim
                     77: *>          N is INTEGER
                     78: *>          The number of linear equations, i.e., the order of the
                     79: *>          matrix A.  N >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] NRHS
                     83: *> \verbatim
                     84: *>          NRHS is INTEGER
                     85: *>          The number of right hand sides, i.e., the number of columns
                     86: *>          of the matrix B.  NRHS >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is DOUBLE PRECISION array,
                     92: *>          dimension (LDA,N)
                     93: *>          On entry, the N-by-N coefficient matrix A.
                     94: *>          On exit, if iterative refinement has been successfully used
                     95: *>          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     96: *>          unchanged, if double precision factorization has been used
                     97: *>          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     98: *>          array A contains the factors L and U from the factorization
                     99: *>          A = P*L*U; the unit diagonal elements of L are not stored.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] LDA
                    103: *> \verbatim
                    104: *>          LDA is INTEGER
                    105: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] IPIV
                    109: *> \verbatim
                    110: *>          IPIV is INTEGER array, dimension (N)
                    111: *>          The pivot indices that define the permutation matrix P;
                    112: *>          row i of the matrix was interchanged with row IPIV(i).
                    113: *>          Corresponds either to the single precision factorization
                    114: *>          (if INFO.EQ.0 and ITER.GE.0) or the double precision
                    115: *>          factorization (if INFO.EQ.0 and ITER.LT.0).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] B
                    119: *> \verbatim
                    120: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    121: *>          The N-by-NRHS right hand side matrix B.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDB
                    125: *> \verbatim
                    126: *>          LDB is INTEGER
                    127: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] X
                    131: *> \verbatim
                    132: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    133: *>          If INFO = 0, the N-by-NRHS solution matrix X.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] LDX
                    137: *> \verbatim
                    138: *>          LDX is INTEGER
                    139: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[out] WORK
                    143: *> \verbatim
                    144: *>          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
                    145: *>          This array is used to hold the residual vectors.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] SWORK
                    149: *> \verbatim
                    150: *>          SWORK is REAL array, dimension (N*(N+NRHS))
                    151: *>          This array is used to use the single precision matrix and the
                    152: *>          right-hand sides or solutions in single precision.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] ITER
                    156: *> \verbatim
                    157: *>          ITER is INTEGER
                    158: *>          < 0: iterative refinement has failed, double precision
                    159: *>               factorization has been performed
                    160: *>               -1 : the routine fell back to full precision for
                    161: *>                    implementation- or machine-specific reasons
                    162: *>               -2 : narrowing the precision induced an overflow,
                    163: *>                    the routine fell back to full precision
                    164: *>               -3 : failure of SGETRF
                    165: *>               -31: stop the iterative refinement after the 30th
                    166: *>                    iterations
1.15      bertrand  167: *>          > 0: iterative refinement has been successfully used.
1.11      bertrand  168: *>               Returns the number of iterations
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] INFO
                    172: *> \verbatim
                    173: *>          INFO is INTEGER
                    174: *>          = 0:  successful exit
                    175: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    176: *>          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
                    177: *>                exactly zero.  The factorization has been completed,
                    178: *>                but the factor U is exactly singular, so the solution
                    179: *>                could not be computed.
                    180: *> \endverbatim
                    181: *
                    182: *  Authors:
                    183: *  ========
                    184: *
1.17      bertrand  185: *> \author Univ. of Tennessee
                    186: *> \author Univ. of California Berkeley
                    187: *> \author Univ. of Colorado Denver
                    188: *> \author NAG Ltd.
1.11      bertrand  189: *
1.15      bertrand  190: *> \date June 2016
1.11      bertrand  191: *
                    192: *> \ingroup doubleGEsolve
                    193: *
                    194: *  =====================================================================
1.1       bertrand  195:       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
1.9       bertrand  196:      $                   SWORK, ITER, INFO )
1.1       bertrand  197: *
1.19      bertrand  198: *  -- LAPACK driver routine (version 3.8.0) --
1.1       bertrand  199: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    200: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  201: *     June 2016
1.1       bertrand  202: *
                    203: *     .. Scalar Arguments ..
                    204:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    205: *     ..
                    206: *     .. Array Arguments ..
                    207:       INTEGER            IPIV( * )
                    208:       REAL               SWORK( * )
                    209:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.9       bertrand  210:      $                   X( LDX, * )
1.1       bertrand  211: *     ..
                    212: *
1.9       bertrand  213: *  =====================================================================
1.1       bertrand  214: *
                    215: *     .. Parameters ..
                    216:       LOGICAL            DOITREF
                    217:       PARAMETER          ( DOITREF = .TRUE. )
                    218: *
                    219:       INTEGER            ITERMAX
                    220:       PARAMETER          ( ITERMAX = 30 )
                    221: *
                    222:       DOUBLE PRECISION   BWDMAX
                    223:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    224: *
                    225:       DOUBLE PRECISION   NEGONE, ONE
                    226:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
                    227: *
                    228: *     .. Local Scalars ..
                    229:       INTEGER            I, IITER, PTSA, PTSX
                    230:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    231: *
                    232: *     .. External Subroutines ..
1.19      bertrand  233:       EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, DGETRF, DGETRS,
                    234:      $                   SGETRF, SGETRS, SLAG2D, XERBLA
1.1       bertrand  235: *     ..
                    236: *     .. External Functions ..
                    237:       INTEGER            IDAMAX
                    238:       DOUBLE PRECISION   DLAMCH, DLANGE
                    239:       EXTERNAL           IDAMAX, DLAMCH, DLANGE
                    240: *     ..
                    241: *     .. Intrinsic Functions ..
                    242:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    243: *     ..
                    244: *     .. Executable Statements ..
                    245: *
                    246:       INFO = 0
                    247:       ITER = 0
                    248: *
                    249: *     Test the input parameters.
                    250: *
                    251:       IF( N.LT.0 ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( NRHS.LT.0 ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    256:          INFO = -4
                    257:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -7
                    259:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -9
                    261:       END IF
                    262:       IF( INFO.NE.0 ) THEN
                    263:          CALL XERBLA( 'DSGESV', -INFO )
                    264:          RETURN
                    265:       END IF
                    266: *
                    267: *     Quick return if (N.EQ.0).
                    268: *
                    269:       IF( N.EQ.0 )
1.9       bertrand  270:      $   RETURN
1.1       bertrand  271: *
                    272: *     Skip single precision iterative refinement if a priori slower
                    273: *     than double precision factorization.
                    274: *
                    275:       IF( .NOT.DOITREF ) THEN
                    276:          ITER = -1
                    277:          GO TO 40
                    278:       END IF
                    279: *
                    280: *     Compute some constants.
                    281: *
                    282:       ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
                    283:       EPS = DLAMCH( 'Epsilon' )
                    284:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    285: *
                    286: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    287: *
                    288:       PTSA = 1
                    289:       PTSX = PTSA + N*N
                    290: *
                    291: *     Convert B from double precision to single precision and store the
                    292: *     result in SX.
                    293: *
                    294:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    295: *
                    296:       IF( INFO.NE.0 ) THEN
                    297:          ITER = -2
                    298:          GO TO 40
                    299:       END IF
                    300: *
                    301: *     Convert A from double precision to single precision and store the
                    302: *     result in SA.
                    303: *
                    304:       CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    305: *
                    306:       IF( INFO.NE.0 ) THEN
                    307:          ITER = -2
                    308:          GO TO 40
                    309:       END IF
                    310: *
                    311: *     Compute the LU factorization of SA.
                    312: *
                    313:       CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    314: *
                    315:       IF( INFO.NE.0 ) THEN
                    316:          ITER = -3
                    317:          GO TO 40
                    318:       END IF
                    319: *
                    320: *     Solve the system SA*SX = SB.
                    321: *
                    322:       CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  323:      $             SWORK( PTSX ), N, INFO )
1.1       bertrand  324: *
                    325: *     Convert SX back to double precision
                    326: *
                    327:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    328: *
                    329: *     Compute R = B - AX (R is WORK).
                    330: *
                    331:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    332: *
                    333:       CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
1.9       bertrand  334:      $            LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  335: *
                    336: *     Check whether the NRHS normwise backward errors satisfy the
                    337: *     stopping criterion. If yes, set ITER=0 and return.
                    338: *
                    339:       DO I = 1, NRHS
                    340:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    341:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    342:          IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  343:      $      GO TO 10
1.1       bertrand  344:       END DO
                    345: *
                    346: *     If we are here, the NRHS normwise backward errors satisfy the
                    347: *     stopping criterion. We are good to exit.
                    348: *
                    349:       ITER = 0
                    350:       RETURN
                    351: *
                    352:    10 CONTINUE
                    353: *
                    354:       DO 30 IITER = 1, ITERMAX
                    355: *
                    356: *        Convert R (in WORK) from double precision to single precision
                    357: *        and store the result in SX.
                    358: *
                    359:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    360: *
                    361:          IF( INFO.NE.0 ) THEN
                    362:             ITER = -2
                    363:             GO TO 40
                    364:          END IF
                    365: *
                    366: *        Solve the system SA*SX = SR.
                    367: *
                    368:          CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  369:      $                SWORK( PTSX ), N, INFO )
1.1       bertrand  370: *
                    371: *        Convert SX back to double precision and update the current
                    372: *        iterate.
                    373: *
                    374:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    375: *
                    376:          DO I = 1, NRHS
                    377:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    378:          END DO
                    379: *
                    380: *        Compute R = B - AX (R is WORK).
                    381: *
                    382:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    383: *
                    384:          CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
1.9       bertrand  385:      $               A, LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  386: *
                    387: *        Check whether the NRHS normwise backward errors satisfy the
                    388: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    389: *
                    390:          DO I = 1, NRHS
                    391:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    392:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    393:             IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  394:      $         GO TO 20
1.1       bertrand  395:          END DO
                    396: *
                    397: *        If we are here, the NRHS normwise backward errors satisfy the
                    398: *        stopping criterion, we are good to exit.
                    399: *
                    400:          ITER = IITER
                    401: *
                    402:          RETURN
                    403: *
                    404:    20    CONTINUE
                    405: *
                    406:    30 CONTINUE
                    407: *
                    408: *     If we are at this place of the code, this is because we have
                    409: *     performed ITER=ITERMAX iterations and never satisified the
                    410: *     stopping criterion, set up the ITER flag accordingly and follow up
                    411: *     on double precision routine.
                    412: *
                    413:       ITER = -ITERMAX - 1
                    414: *
                    415:    40 CONTINUE
                    416: *
                    417: *     Single-precision iterative refinement failed to converge to a
                    418: *     satisfactory solution, so we resort to double precision.
                    419: *
                    420:       CALL DGETRF( N, N, A, LDA, IPIV, INFO )
                    421: *
                    422:       IF( INFO.NE.0 )
1.9       bertrand  423:      $   RETURN
1.1       bertrand  424: *
                    425:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    426:       CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
1.9       bertrand  427:      $             INFO )
1.1       bertrand  428: *
                    429:       RETURN
                    430: *
                    431: *     End of DSGESV.
                    432: *
                    433:       END

CVSweb interface <joel.bertrand@systella.fr>