Annotation of rpl/lapack/lapack/dsgesv.f, revision 1.11

1.11    ! bertrand    1: *> \brief <b> DSGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSGESV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsgesv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsgesv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsgesv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
        !            22: *                          SWORK, ITER, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       INTEGER            IPIV( * )
        !            29: *       REAL               SWORK( * )
        !            30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
        !            31: *      $                   X( LDX, * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> DSGESV computes the solution to a real system of linear equations
        !            41: *>    A * X = B,
        !            42: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
        !            43: *>
        !            44: *> DSGESV first attempts to factorize the matrix in SINGLE PRECISION
        !            45: *> and use this factorization within an iterative refinement procedure
        !            46: *> to produce a solution with DOUBLE PRECISION normwise backward error
        !            47: *> quality (see below). If the approach fails the method switches to a
        !            48: *> DOUBLE PRECISION factorization and solve.
        !            49: *>
        !            50: *> The iterative refinement is not going to be a winning strategy if
        !            51: *> the ratio SINGLE PRECISION performance over DOUBLE PRECISION
        !            52: *> performance is too small. A reasonable strategy should take the
        !            53: *> number of right-hand sides and the size of the matrix into account.
        !            54: *> This might be done with a call to ILAENV in the future. Up to now, we
        !            55: *> always try iterative refinement.
        !            56: *>
        !            57: *> The iterative refinement process is stopped if
        !            58: *>     ITER > ITERMAX
        !            59: *> or for all the RHS we have:
        !            60: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
        !            61: *> where
        !            62: *>     o ITER is the number of the current iteration in the iterative
        !            63: *>       refinement process
        !            64: *>     o RNRM is the infinity-norm of the residual
        !            65: *>     o XNRM is the infinity-norm of the solution
        !            66: *>     o ANRM is the infinity-operator-norm of the matrix A
        !            67: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
        !            68: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
        !            69: *> respectively.
        !            70: *> \endverbatim
        !            71: *
        !            72: *  Arguments:
        !            73: *  ==========
        !            74: *
        !            75: *> \param[in] N
        !            76: *> \verbatim
        !            77: *>          N is INTEGER
        !            78: *>          The number of linear equations, i.e., the order of the
        !            79: *>          matrix A.  N >= 0.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] NRHS
        !            83: *> \verbatim
        !            84: *>          NRHS is INTEGER
        !            85: *>          The number of right hand sides, i.e., the number of columns
        !            86: *>          of the matrix B.  NRHS >= 0.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in,out] A
        !            90: *> \verbatim
        !            91: *>          A is DOUBLE PRECISION array,
        !            92: *>          dimension (LDA,N)
        !            93: *>          On entry, the N-by-N coefficient matrix A.
        !            94: *>          On exit, if iterative refinement has been successfully used
        !            95: *>          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
        !            96: *>          unchanged, if double precision factorization has been used
        !            97: *>          (INFO.EQ.0 and ITER.LT.0, see description below), then the
        !            98: *>          array A contains the factors L and U from the factorization
        !            99: *>          A = P*L*U; the unit diagonal elements of L are not stored.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in] LDA
        !           103: *> \verbatim
        !           104: *>          LDA is INTEGER
        !           105: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[out] IPIV
        !           109: *> \verbatim
        !           110: *>          IPIV is INTEGER array, dimension (N)
        !           111: *>          The pivot indices that define the permutation matrix P;
        !           112: *>          row i of the matrix was interchanged with row IPIV(i).
        !           113: *>          Corresponds either to the single precision factorization
        !           114: *>          (if INFO.EQ.0 and ITER.GE.0) or the double precision
        !           115: *>          factorization (if INFO.EQ.0 and ITER.LT.0).
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] B
        !           119: *> \verbatim
        !           120: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           121: *>          The N-by-NRHS right hand side matrix B.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDB
        !           125: *> \verbatim
        !           126: *>          LDB is INTEGER
        !           127: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] X
        !           131: *> \verbatim
        !           132: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           133: *>          If INFO = 0, the N-by-NRHS solution matrix X.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] LDX
        !           137: *> \verbatim
        !           138: *>          LDX is INTEGER
        !           139: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[out] WORK
        !           143: *> \verbatim
        !           144: *>          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
        !           145: *>          This array is used to hold the residual vectors.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] SWORK
        !           149: *> \verbatim
        !           150: *>          SWORK is REAL array, dimension (N*(N+NRHS))
        !           151: *>          This array is used to use the single precision matrix and the
        !           152: *>          right-hand sides or solutions in single precision.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] ITER
        !           156: *> \verbatim
        !           157: *>          ITER is INTEGER
        !           158: *>          < 0: iterative refinement has failed, double precision
        !           159: *>               factorization has been performed
        !           160: *>               -1 : the routine fell back to full precision for
        !           161: *>                    implementation- or machine-specific reasons
        !           162: *>               -2 : narrowing the precision induced an overflow,
        !           163: *>                    the routine fell back to full precision
        !           164: *>               -3 : failure of SGETRF
        !           165: *>               -31: stop the iterative refinement after the 30th
        !           166: *>                    iterations
        !           167: *>          > 0: iterative refinement has been sucessfully used.
        !           168: *>               Returns the number of iterations
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[out] INFO
        !           172: *> \verbatim
        !           173: *>          INFO is INTEGER
        !           174: *>          = 0:  successful exit
        !           175: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           176: *>          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
        !           177: *>                exactly zero.  The factorization has been completed,
        !           178: *>                but the factor U is exactly singular, so the solution
        !           179: *>                could not be computed.
        !           180: *> \endverbatim
        !           181: *
        !           182: *  Authors:
        !           183: *  ========
        !           184: *
        !           185: *> \author Univ. of Tennessee 
        !           186: *> \author Univ. of California Berkeley 
        !           187: *> \author Univ. of Colorado Denver 
        !           188: *> \author NAG Ltd. 
        !           189: *
        !           190: *> \date November 2011
        !           191: *
        !           192: *> \ingroup doubleGEsolve
        !           193: *
        !           194: *  =====================================================================
1.1       bertrand  195:       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
1.9       bertrand  196:      $                   SWORK, ITER, INFO )
1.1       bertrand  197: *
1.11    ! bertrand  198: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  199: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    200: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  201: *     November 2011
1.1       bertrand  202: *
                    203: *     .. Scalar Arguments ..
                    204:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    205: *     ..
                    206: *     .. Array Arguments ..
                    207:       INTEGER            IPIV( * )
                    208:       REAL               SWORK( * )
                    209:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.9       bertrand  210:      $                   X( LDX, * )
1.1       bertrand  211: *     ..
                    212: *
1.9       bertrand  213: *  =====================================================================
1.1       bertrand  214: *
                    215: *     .. Parameters ..
                    216:       LOGICAL            DOITREF
                    217:       PARAMETER          ( DOITREF = .TRUE. )
                    218: *
                    219:       INTEGER            ITERMAX
                    220:       PARAMETER          ( ITERMAX = 30 )
                    221: *
                    222:       DOUBLE PRECISION   BWDMAX
                    223:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    224: *
                    225:       DOUBLE PRECISION   NEGONE, ONE
                    226:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
                    227: *
                    228: *     .. Local Scalars ..
                    229:       INTEGER            I, IITER, PTSA, PTSX
                    230:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    231: *
                    232: *     .. External Subroutines ..
                    233:       EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, SLAG2D, SGETRF,
1.9       bertrand  234:      $                   SGETRS, XERBLA
1.1       bertrand  235: *     ..
                    236: *     .. External Functions ..
                    237:       INTEGER            IDAMAX
                    238:       DOUBLE PRECISION   DLAMCH, DLANGE
                    239:       EXTERNAL           IDAMAX, DLAMCH, DLANGE
                    240: *     ..
                    241: *     .. Intrinsic Functions ..
                    242:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    243: *     ..
                    244: *     .. Executable Statements ..
                    245: *
                    246:       INFO = 0
                    247:       ITER = 0
                    248: *
                    249: *     Test the input parameters.
                    250: *
                    251:       IF( N.LT.0 ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( NRHS.LT.0 ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    256:          INFO = -4
                    257:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -7
                    259:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -9
                    261:       END IF
                    262:       IF( INFO.NE.0 ) THEN
                    263:          CALL XERBLA( 'DSGESV', -INFO )
                    264:          RETURN
                    265:       END IF
                    266: *
                    267: *     Quick return if (N.EQ.0).
                    268: *
                    269:       IF( N.EQ.0 )
1.9       bertrand  270:      $   RETURN
1.1       bertrand  271: *
                    272: *     Skip single precision iterative refinement if a priori slower
                    273: *     than double precision factorization.
                    274: *
                    275:       IF( .NOT.DOITREF ) THEN
                    276:          ITER = -1
                    277:          GO TO 40
                    278:       END IF
                    279: *
                    280: *     Compute some constants.
                    281: *
                    282:       ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
                    283:       EPS = DLAMCH( 'Epsilon' )
                    284:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    285: *
                    286: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    287: *
                    288:       PTSA = 1
                    289:       PTSX = PTSA + N*N
                    290: *
                    291: *     Convert B from double precision to single precision and store the
                    292: *     result in SX.
                    293: *
                    294:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    295: *
                    296:       IF( INFO.NE.0 ) THEN
                    297:          ITER = -2
                    298:          GO TO 40
                    299:       END IF
                    300: *
                    301: *     Convert A from double precision to single precision and store the
                    302: *     result in SA.
                    303: *
                    304:       CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    305: *
                    306:       IF( INFO.NE.0 ) THEN
                    307:          ITER = -2
                    308:          GO TO 40
                    309:       END IF
                    310: *
                    311: *     Compute the LU factorization of SA.
                    312: *
                    313:       CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    314: *
                    315:       IF( INFO.NE.0 ) THEN
                    316:          ITER = -3
                    317:          GO TO 40
                    318:       END IF
                    319: *
                    320: *     Solve the system SA*SX = SB.
                    321: *
                    322:       CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  323:      $             SWORK( PTSX ), N, INFO )
1.1       bertrand  324: *
                    325: *     Convert SX back to double precision
                    326: *
                    327:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    328: *
                    329: *     Compute R = B - AX (R is WORK).
                    330: *
                    331:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    332: *
                    333:       CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
1.9       bertrand  334:      $            LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  335: *
                    336: *     Check whether the NRHS normwise backward errors satisfy the
                    337: *     stopping criterion. If yes, set ITER=0 and return.
                    338: *
                    339:       DO I = 1, NRHS
                    340:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    341:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    342:          IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  343:      $      GO TO 10
1.1       bertrand  344:       END DO
                    345: *
                    346: *     If we are here, the NRHS normwise backward errors satisfy the
                    347: *     stopping criterion. We are good to exit.
                    348: *
                    349:       ITER = 0
                    350:       RETURN
                    351: *
                    352:    10 CONTINUE
                    353: *
                    354:       DO 30 IITER = 1, ITERMAX
                    355: *
                    356: *        Convert R (in WORK) from double precision to single precision
                    357: *        and store the result in SX.
                    358: *
                    359:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    360: *
                    361:          IF( INFO.NE.0 ) THEN
                    362:             ITER = -2
                    363:             GO TO 40
                    364:          END IF
                    365: *
                    366: *        Solve the system SA*SX = SR.
                    367: *
                    368:          CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  369:      $                SWORK( PTSX ), N, INFO )
1.1       bertrand  370: *
                    371: *        Convert SX back to double precision and update the current
                    372: *        iterate.
                    373: *
                    374:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    375: *
                    376:          DO I = 1, NRHS
                    377:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    378:          END DO
                    379: *
                    380: *        Compute R = B - AX (R is WORK).
                    381: *
                    382:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    383: *
                    384:          CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
1.9       bertrand  385:      $               A, LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  386: *
                    387: *        Check whether the NRHS normwise backward errors satisfy the
                    388: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    389: *
                    390:          DO I = 1, NRHS
                    391:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
                    392:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
                    393:             IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  394:      $         GO TO 20
1.1       bertrand  395:          END DO
                    396: *
                    397: *        If we are here, the NRHS normwise backward errors satisfy the
                    398: *        stopping criterion, we are good to exit.
                    399: *
                    400:          ITER = IITER
                    401: *
                    402:          RETURN
                    403: *
                    404:    20    CONTINUE
                    405: *
                    406:    30 CONTINUE
                    407: *
                    408: *     If we are at this place of the code, this is because we have
                    409: *     performed ITER=ITERMAX iterations and never satisified the
                    410: *     stopping criterion, set up the ITER flag accordingly and follow up
                    411: *     on double precision routine.
                    412: *
                    413:       ITER = -ITERMAX - 1
                    414: *
                    415:    40 CONTINUE
                    416: *
                    417: *     Single-precision iterative refinement failed to converge to a
                    418: *     satisfactory solution, so we resort to double precision.
                    419: *
                    420:       CALL DGETRF( N, N, A, LDA, IPIV, INFO )
                    421: *
                    422:       IF( INFO.NE.0 )
1.9       bertrand  423:      $   RETURN
1.1       bertrand  424: *
                    425:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    426:       CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
1.9       bertrand  427:      $             INFO )
1.1       bertrand  428: *
                    429:       RETURN
                    430: *
                    431: *     End of DSGESV.
                    432: *
                    433:       END

CVSweb interface <joel.bertrand@systella.fr>