Annotation of rpl/lapack/lapack/dsgesv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
        !             2:      +                   SWORK, ITER, INFO )
        !             3: *
        !             4: *  -- LAPACK PROTOTYPE driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     February 2007
        !             8: *
        !             9: *     ..
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IPIV( * )
        !            15:       REAL               SWORK( * )
        !            16:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
        !            17:      +                   X( LDX, * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  DSGESV computes the solution to a real system of linear equations
        !            24: *     A * X = B,
        !            25: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
        !            26: *
        !            27: *  DSGESV first attempts to factorize the matrix in SINGLE PRECISION
        !            28: *  and use this factorization within an iterative refinement procedure
        !            29: *  to produce a solution with DOUBLE PRECISION normwise backward error
        !            30: *  quality (see below). If the approach fails the method switches to a
        !            31: *  DOUBLE PRECISION factorization and solve.
        !            32: *
        !            33: *  The iterative refinement is not going to be a winning strategy if
        !            34: *  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
        !            35: *  performance is too small. A reasonable strategy should take the
        !            36: *  number of right-hand sides and the size of the matrix into account.
        !            37: *  This might be done with a call to ILAENV in the future. Up to now, we
        !            38: *  always try iterative refinement.
        !            39: *
        !            40: *  The iterative refinement process is stopped if
        !            41: *      ITER > ITERMAX
        !            42: *  or for all the RHS we have:
        !            43: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
        !            44: *  where
        !            45: *      o ITER is the number of the current iteration in the iterative
        !            46: *        refinement process
        !            47: *      o RNRM is the infinity-norm of the residual
        !            48: *      o XNRM is the infinity-norm of the solution
        !            49: *      o ANRM is the infinity-operator-norm of the matrix A
        !            50: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
        !            51: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
        !            52: *  respectively.
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  N       (input) INTEGER
        !            58: *          The number of linear equations, i.e., the order of the
        !            59: *          matrix A.  N >= 0.
        !            60: *
        !            61: *  NRHS    (input) INTEGER
        !            62: *          The number of right hand sides, i.e., the number of columns
        !            63: *          of the matrix B.  NRHS >= 0.
        !            64: *
        !            65: *  A       (input or input/ouptut) DOUBLE PRECISION array,
        !            66: *          dimension (LDA,N)
        !            67: *          On entry, the N-by-N coefficient matrix A.
        !            68: *          On exit, if iterative refinement has been successfully used
        !            69: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
        !            70: *          unchanged, if double precision factorization has been used
        !            71: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
        !            72: *          array A contains the factors L and U from the factorization
        !            73: *          A = P*L*U; the unit diagonal elements of L are not stored.
        !            74: *
        !            75: *  LDA     (input) INTEGER
        !            76: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            77: *
        !            78: *  IPIV    (output) INTEGER array, dimension (N)
        !            79: *          The pivot indices that define the permutation matrix P;
        !            80: *          row i of the matrix was interchanged with row IPIV(i).
        !            81: *          Corresponds either to the single precision factorization
        !            82: *          (if INFO.EQ.0 and ITER.GE.0) or the double precision
        !            83: *          factorization (if INFO.EQ.0 and ITER.LT.0).
        !            84: *
        !            85: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            86: *          The N-by-NRHS right hand side matrix B.
        !            87: *
        !            88: *  LDB     (input) INTEGER
        !            89: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            90: *
        !            91: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !            92: *          If INFO = 0, the N-by-NRHS solution matrix X.
        !            93: *
        !            94: *  LDX     (input) INTEGER
        !            95: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            96: *
        !            97: *  WORK    (workspace) DOUBLE PRECISION array, dimension (N*NRHS)
        !            98: *          This array is used to hold the residual vectors.
        !            99: *
        !           100: *  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
        !           101: *          This array is used to use the single precision matrix and the
        !           102: *          right-hand sides or solutions in single precision.
        !           103: *
        !           104: *  ITER    (output) INTEGER
        !           105: *          < 0: iterative refinement has failed, double precision
        !           106: *               factorization has been performed
        !           107: *               -1 : the routine fell back to full precision for
        !           108: *                    implementation- or machine-specific reasons
        !           109: *               -2 : narrowing the precision induced an overflow,
        !           110: *                    the routine fell back to full precision
        !           111: *               -3 : failure of SGETRF
        !           112: *               -31: stop the iterative refinement after the 30th
        !           113: *                    iterations
        !           114: *          > 0: iterative refinement has been sucessfully used.
        !           115: *               Returns the number of iterations
        !           116: *
        !           117: *  INFO    (output) INTEGER
        !           118: *          = 0:  successful exit
        !           119: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           120: *          > 0:  if INFO = i, U(i,i) computed in DOUBLE PRECISION is
        !           121: *                exactly zero.  The factorization has been completed,
        !           122: *                but the factor U is exactly singular, so the solution
        !           123: *                could not be computed.
        !           124: *
        !           125: *  =========
        !           126: *
        !           127: *     .. Parameters ..
        !           128:       LOGICAL            DOITREF
        !           129:       PARAMETER          ( DOITREF = .TRUE. )
        !           130: *
        !           131:       INTEGER            ITERMAX
        !           132:       PARAMETER          ( ITERMAX = 30 )
        !           133: *
        !           134:       DOUBLE PRECISION   BWDMAX
        !           135:       PARAMETER          ( BWDMAX = 1.0E+00 )
        !           136: *
        !           137:       DOUBLE PRECISION   NEGONE, ONE
        !           138:       PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
        !           139: *
        !           140: *     .. Local Scalars ..
        !           141:       INTEGER            I, IITER, PTSA, PTSX
        !           142:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
        !           143: *
        !           144: *     .. External Subroutines ..
        !           145:       EXTERNAL           DAXPY, DGEMM, DLACPY, DLAG2S, SLAG2D, SGETRF,
        !           146:      +                   SGETRS, XERBLA
        !           147: *     ..
        !           148: *     .. External Functions ..
        !           149:       INTEGER            IDAMAX
        !           150:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           151:       EXTERNAL           IDAMAX, DLAMCH, DLANGE
        !           152: *     ..
        !           153: *     .. Intrinsic Functions ..
        !           154:       INTRINSIC          ABS, DBLE, MAX, SQRT
        !           155: *     ..
        !           156: *     .. Executable Statements ..
        !           157: *
        !           158:       INFO = 0
        !           159:       ITER = 0
        !           160: *
        !           161: *     Test the input parameters.
        !           162: *
        !           163:       IF( N.LT.0 ) THEN
        !           164:          INFO = -1
        !           165:       ELSE IF( NRHS.LT.0 ) THEN
        !           166:          INFO = -2
        !           167:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           168:          INFO = -4
        !           169:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           170:          INFO = -7
        !           171:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           172:          INFO = -9
        !           173:       END IF
        !           174:       IF( INFO.NE.0 ) THEN
        !           175:          CALL XERBLA( 'DSGESV', -INFO )
        !           176:          RETURN
        !           177:       END IF
        !           178: *
        !           179: *     Quick return if (N.EQ.0).
        !           180: *
        !           181:       IF( N.EQ.0 )
        !           182:      +   RETURN
        !           183: *
        !           184: *     Skip single precision iterative refinement if a priori slower
        !           185: *     than double precision factorization.
        !           186: *
        !           187:       IF( .NOT.DOITREF ) THEN
        !           188:          ITER = -1
        !           189:          GO TO 40
        !           190:       END IF
        !           191: *
        !           192: *     Compute some constants.
        !           193: *
        !           194:       ANRM = DLANGE( 'I', N, N, A, LDA, WORK )
        !           195:       EPS = DLAMCH( 'Epsilon' )
        !           196:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
        !           197: *
        !           198: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
        !           199: *
        !           200:       PTSA = 1
        !           201:       PTSX = PTSA + N*N
        !           202: *
        !           203: *     Convert B from double precision to single precision and store the
        !           204: *     result in SX.
        !           205: *
        !           206:       CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
        !           207: *
        !           208:       IF( INFO.NE.0 ) THEN
        !           209:          ITER = -2
        !           210:          GO TO 40
        !           211:       END IF
        !           212: *
        !           213: *     Convert A from double precision to single precision and store the
        !           214: *     result in SA.
        !           215: *
        !           216:       CALL DLAG2S( N, N, A, LDA, SWORK( PTSA ), N, INFO )
        !           217: *
        !           218:       IF( INFO.NE.0 ) THEN
        !           219:          ITER = -2
        !           220:          GO TO 40
        !           221:       END IF
        !           222: *
        !           223: *     Compute the LU factorization of SA.
        !           224: *
        !           225:       CALL SGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
        !           226: *
        !           227:       IF( INFO.NE.0 ) THEN
        !           228:          ITER = -3
        !           229:          GO TO 40
        !           230:       END IF
        !           231: *
        !           232: *     Solve the system SA*SX = SB.
        !           233: *
        !           234:       CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
        !           235:      +             SWORK( PTSX ), N, INFO )
        !           236: *
        !           237: *     Convert SX back to double precision
        !           238: *
        !           239:       CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
        !           240: *
        !           241: *     Compute R = B - AX (R is WORK).
        !           242: *
        !           243:       CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           244: *
        !           245:       CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
        !           246:      +            LDA, X, LDX, ONE, WORK, N )
        !           247: *
        !           248: *     Check whether the NRHS normwise backward errors satisfy the
        !           249: *     stopping criterion. If yes, set ITER=0 and return.
        !           250: *
        !           251:       DO I = 1, NRHS
        !           252:          XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
        !           253:          RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           254:          IF( RNRM.GT.XNRM*CTE )
        !           255:      +      GO TO 10
        !           256:       END DO
        !           257: *
        !           258: *     If we are here, the NRHS normwise backward errors satisfy the
        !           259: *     stopping criterion. We are good to exit.
        !           260: *
        !           261:       ITER = 0
        !           262:       RETURN
        !           263: *
        !           264:    10 CONTINUE
        !           265: *
        !           266:       DO 30 IITER = 1, ITERMAX
        !           267: *
        !           268: *        Convert R (in WORK) from double precision to single precision
        !           269: *        and store the result in SX.
        !           270: *
        !           271:          CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
        !           272: *
        !           273:          IF( INFO.NE.0 ) THEN
        !           274:             ITER = -2
        !           275:             GO TO 40
        !           276:          END IF
        !           277: *
        !           278: *        Solve the system SA*SX = SR.
        !           279: *
        !           280:          CALL SGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
        !           281:      +                SWORK( PTSX ), N, INFO )
        !           282: *
        !           283: *        Convert SX back to double precision and update the current
        !           284: *        iterate.
        !           285: *
        !           286:          CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
        !           287: *
        !           288:          DO I = 1, NRHS
        !           289:             CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
        !           290:          END DO
        !           291: *
        !           292: *        Compute R = B - AX (R is WORK).
        !           293: *
        !           294:          CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           295: *
        !           296:          CALL DGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
        !           297:      +               A, LDA, X, LDX, ONE, WORK, N )
        !           298: *
        !           299: *        Check whether the NRHS normwise backward errors satisfy the
        !           300: *        stopping criterion. If yes, set ITER=IITER>0 and return.
        !           301: *
        !           302:          DO I = 1, NRHS
        !           303:             XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
        !           304:             RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           305:             IF( RNRM.GT.XNRM*CTE )
        !           306:      +         GO TO 20
        !           307:          END DO
        !           308: *
        !           309: *        If we are here, the NRHS normwise backward errors satisfy the
        !           310: *        stopping criterion, we are good to exit.
        !           311: *
        !           312:          ITER = IITER
        !           313: *
        !           314:          RETURN
        !           315: *
        !           316:    20    CONTINUE
        !           317: *
        !           318:    30 CONTINUE
        !           319: *
        !           320: *     If we are at this place of the code, this is because we have
        !           321: *     performed ITER=ITERMAX iterations and never satisified the
        !           322: *     stopping criterion, set up the ITER flag accordingly and follow up
        !           323: *     on double precision routine.
        !           324: *
        !           325:       ITER = -ITERMAX - 1
        !           326: *
        !           327:    40 CONTINUE
        !           328: *
        !           329: *     Single-precision iterative refinement failed to converge to a
        !           330: *     satisfactory solution, so we resort to double precision.
        !           331: *
        !           332:       CALL DGETRF( N, N, A, LDA, IPIV, INFO )
        !           333: *
        !           334:       IF( INFO.NE.0 )
        !           335:      +   RETURN
        !           336: *
        !           337:       CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
        !           338:       CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
        !           339:      +             INFO )
        !           340: *
        !           341:       RETURN
        !           342: *
        !           343: *     End of DSGESV.
        !           344: *
        !           345:       END

CVSweb interface <joel.bertrand@systella.fr>