--- rpl/lapack/lapack/dsfrk.f 2010/08/13 21:03:57 1.3 +++ rpl/lapack/lapack/dsfrk.f 2012/12/14 12:30:27 1.10 @@ -1,15 +1,176 @@ - SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, - + C ) +*> \brief \b DSFRK performs a symmetric rank-k operation for matrix in RFP format. +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DSFRK + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, +* C ) +* +* .. Scalar Arguments .. +* DOUBLE PRECISION ALPHA, BETA +* INTEGER K, LDA, N +* CHARACTER TRANS, TRANSR, UPLO +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), C( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> Level 3 BLAS like routine for C in RFP Format. +*> +*> DSFRK performs one of the symmetric rank--k operations +*> +*> C := alpha*A*A**T + beta*C, +*> +*> or +*> +*> C := alpha*A**T*A + beta*C, +*> +*> where alpha and beta are real scalars, C is an n--by--n symmetric +*> matrix and A is an n--by--k matrix in the first case and a k--by--n +*> matrix in the second case. +*> \endverbatim +* +* Arguments: +* ========== * -* -- LAPACK routine (version 3.2.2) -- +*> \param[in] TRANSR +*> \verbatim +*> TRANSR is CHARACTER*1 +*> = 'N': The Normal Form of RFP A is stored; +*> = 'T': The Transpose Form of RFP A is stored. +*> \endverbatim +*> +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> On entry, UPLO specifies whether the upper or lower +*> triangular part of the array C is to be referenced as +*> follows: +*> +*> UPLO = 'U' or 'u' Only the upper triangular part of C +*> is to be referenced. +*> +*> UPLO = 'L' or 'l' Only the lower triangular part of C +*> is to be referenced. +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> On entry, TRANS specifies the operation to be performed as +*> follows: +*> +*> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. +*> +*> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. +*> +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> On entry, N specifies the order of the matrix C. N must be +*> at least zero. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] K +*> \verbatim +*> K is INTEGER +*> On entry with TRANS = 'N' or 'n', K specifies the number +*> of columns of the matrix A, and on entry with TRANS = 'T' +*> or 't', K specifies the number of rows of the matrix A. K +*> must be at least zero. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] ALPHA +*> \verbatim +*> ALPHA is DOUBLE PRECISION +*> On entry, ALPHA specifies the scalar alpha. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA,ka) +*> where KA +*> is K when TRANS = 'N' or 'n', and is N otherwise. Before +*> entry with TRANS = 'N' or 'n', the leading N--by--K part of +*> the array A must contain the matrix A, otherwise the leading +*> K--by--N part of the array A must contain the matrix A. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> On entry, LDA specifies the first dimension of A as declared +*> in the calling (sub) program. When TRANS = 'N' or 'n' +*> then LDA must be at least max( 1, n ), otherwise LDA must +*> be at least max( 1, k ). +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in] BETA +*> \verbatim +*> BETA is DOUBLE PRECISION +*> On entry, BETA specifies the scalar beta. +*> Unchanged on exit. +*> \endverbatim +*> +*> \param[in,out] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (NT) +*> NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP +*> Format. RFP Format is described by TRANSR, UPLO and N. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -* -- Contributed by Julien Langou of the Univ. of Colorado Denver -- -* -- June 2010 -- +*> \date September 2012 * +*> \ingroup doubleOTHERcomputational +* +* ===================================================================== + SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, + $ C ) +* +* -- LAPACK computational routine (version 3.4.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* September 2012 * -* .. * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER K, LDA, N @@ -19,95 +180,7 @@ DOUBLE PRECISION A( LDA, * ), C( * ) * .. * -* Purpose -* ======= -* -* Level 3 BLAS like routine for C in RFP Format. -* -* DSFRK performs one of the symmetric rank--k operations -* -* C := alpha*A*A' + beta*C, -* -* or -* -* C := alpha*A'*A + beta*C, -* -* where alpha and beta are real scalars, C is an n--by--n symmetric -* matrix and A is an n--by--k matrix in the first case and a k--by--n -* matrix in the second case. -* -* Arguments -* ========== -* -* TRANSR (input) CHARACTER -* = 'N': The Normal Form of RFP A is stored; -* = 'T': The Transpose Form of RFP A is stored. -* -* UPLO (input) CHARACTER -* On entry, UPLO specifies whether the upper or lower -* triangular part of the array C is to be referenced as -* follows: -* -* UPLO = 'U' or 'u' Only the upper triangular part of C -* is to be referenced. -* -* UPLO = 'L' or 'l' Only the lower triangular part of C -* is to be referenced. -* -* Unchanged on exit. -* -* TRANS (input) CHARACTER -* On entry, TRANS specifies the operation to be performed as -* follows: -* -* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. -* -* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. -* -* Unchanged on exit. -* -* N (input) INTEGER -* On entry, N specifies the order of the matrix C. N must be -* at least zero. -* Unchanged on exit. -* -* K (input) INTEGER -* On entry with TRANS = 'N' or 'n', K specifies the number -* of columns of the matrix A, and on entry with TRANS = 'T' -* or 't', K specifies the number of rows of the matrix A. K -* must be at least zero. -* Unchanged on exit. -* -* ALPHA (input) DOUBLE PRECISION -* On entry, ALPHA specifies the scalar alpha. -* Unchanged on exit. -* -* A (input) DOUBLE PRECISION array, dimension (LDA,ka) -* where KA -* is K when TRANS = 'N' or 'n', and is N otherwise. Before -* entry with TRANS = 'N' or 'n', the leading N--by--K part of -* the array A must contain the matrix A, otherwise the leading -* K--by--N part of the array A must contain the matrix A. -* Unchanged on exit. -* -* LDA (input) INTEGER -* On entry, LDA specifies the first dimension of A as declared -* in the calling (sub) program. When TRANS = 'N' or 'n' -* then LDA must be at least max( 1, n ), otherwise LDA must -* be at least max( 1, k ). -* Unchanged on exit. -* -* BETA (input) DOUBLE PRECISION -* On entry, BETA specifies the scalar beta. -* Unchanged on exit. -* -* -* C (input/output) DOUBLE PRECISION array, dimension (NT) -* NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP -* Format. RFP Format is described by TRANSR, UPLO and N. -* -* Arguments -* ========== +* ===================================================================== * * .. * .. Parameters .. @@ -167,7 +240,7 @@ * done (it is in DSYRK for example) and left in the general case. * IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND. - + ( BETA.EQ.ONE ) ) )RETURN + $ ( BETA.EQ.ONE ) ) )RETURN * IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN DO J = 1, ( ( N*( N+1 ) ) / 2 ) @@ -211,22 +284,22 @@ * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 1 ), N ) + $ BETA, C( 1 ), N ) CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, - + BETA, C( N+1 ), N ) + $ BETA, C( N+1 ), N ) CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) + $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 1 ), N ) + $ BETA, C( 1 ), N ) CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, - + BETA, C( N+1 ), N ) + $ BETA, C( N+1 ), N ) CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) + $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N ) * END IF * @@ -239,22 +312,22 @@ * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( N2+1 ), N ) + $ BETA, C( N2+1 ), N ) CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA, - + BETA, C( N1+1 ), N ) + $ BETA, C( N1+1 ), N ) CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ), - + LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N ) + $ LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N ) * ELSE * * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( N2+1 ), N ) + $ BETA, C( N2+1 ), N ) CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA, - + BETA, C( N1+1 ), N ) + $ BETA, C( N1+1 ), N ) CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ), - + LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N ) + $ LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N ) * END IF * @@ -273,24 +346,24 @@ * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 1 ), N1 ) + $ BETA, C( 1 ), N1 ) CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, - + BETA, C( 2 ), N1 ) + $ BETA, C( 2 ), N1 ) CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ), - + LDA, A( N1+1, 1 ), LDA, BETA, - + C( N1*N1+1 ), N1 ) + $ LDA, A( N1+1, 1 ), LDA, BETA, + $ C( N1*N1+1 ), N1 ) * ELSE * * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 1 ), N1 ) + $ BETA, C( 1 ), N1 ) CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, - + BETA, C( 2 ), N1 ) + $ BETA, C( 2 ), N1 ) CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ), - + LDA, A( 1, N1+1 ), LDA, BETA, - + C( N1*N1+1 ), N1 ) + $ LDA, A( 1, N1+1 ), LDA, BETA, + $ C( N1*N1+1 ), N1 ) * END IF * @@ -303,22 +376,22 @@ * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( N2*N2+1 ), N2 ) + $ BETA, C( N2*N2+1 ), N2 ) CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA, - + BETA, C( N1*N2+1 ), N2 ) + $ BETA, C( N1*N2+1 ), N2 ) CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) + $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) * ELSE * * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( N2*N2+1 ), N2 ) + $ BETA, C( N2*N2+1 ), N2 ) CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA, - + BETA, C( N1*N2+1 ), N2 ) + $ BETA, C( N1*N2+1 ), N2 ) CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) + $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 ) * END IF * @@ -343,24 +416,24 @@ * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 2 ), N+1 ) + $ BETA, C( 2 ), N+1 ) CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, - + BETA, C( 1 ), N+1 ) + $ BETA, C( 1 ), N+1 ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), - + N+1 ) + $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), + $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( 2 ), N+1 ) + $ BETA, C( 2 ), N+1 ) CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, - + BETA, C( 1 ), N+1 ) + $ BETA, C( 1 ), N+1 ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), - + N+1 ) + $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ), + $ N+1 ) * END IF * @@ -373,24 +446,24 @@ * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK+2 ), N+1 ) + $ BETA, C( NK+2 ), N+1 ) CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, - + BETA, C( NK+1 ), N+1 ) + $ BETA, C( NK+1 ), N+1 ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ), - + LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ), - + N+1 ) + $ LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ), + $ N+1 ) * ELSE * * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK+2 ), N+1 ) + $ BETA, C( NK+2 ), N+1 ) CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, - + BETA, C( NK+1 ), N+1 ) + $ BETA, C( NK+1 ), N+1 ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ), - + LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ), - + N+1 ) + $ LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ), + $ N+1 ) * END IF * @@ -409,24 +482,24 @@ * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N' * CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK+1 ), NK ) + $ BETA, C( NK+1 ), NK ) CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, - + BETA, C( 1 ), NK ) + $ BETA, C( 1 ), NK ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ), - + LDA, A( NK+1, 1 ), LDA, BETA, - + C( ( ( NK+1 )*NK )+1 ), NK ) + $ LDA, A( NK+1, 1 ), LDA, BETA, + $ C( ( ( NK+1 )*NK )+1 ), NK ) * ELSE * * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T' * CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK+1 ), NK ) + $ BETA, C( NK+1 ), NK ) CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, - + BETA, C( 1 ), NK ) + $ BETA, C( 1 ), NK ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ), - + LDA, A( 1, NK+1 ), LDA, BETA, - + C( ( ( NK+1 )*NK )+1 ), NK ) + $ LDA, A( 1, NK+1 ), LDA, BETA, + $ C( ( ( NK+1 )*NK )+1 ), NK ) * END IF * @@ -439,22 +512,22 @@ * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N' * CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK*( NK+1 )+1 ), NK ) + $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA, - + BETA, C( NK*NK+1 ), NK ) + $ BETA, C( NK*NK+1 ), NK ) CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) + $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) * ELSE * * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T' * CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA, - + BETA, C( NK*( NK+1 )+1 ), NK ) + $ BETA, C( NK*( NK+1 )+1 ), NK ) CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA, - + BETA, C( NK*NK+1 ), NK ) + $ BETA, C( NK*NK+1 ), NK ) CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ), - + LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) + $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK ) * END IF *