File:  [local] / rpl / lapack / lapack / dsbgvx.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:39 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DSBGST
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DSBGVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
   22: *                          LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
   23: *                          LDZ, WORK, IWORK, IFAIL, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
   28: *      $                   N
   29: *       DOUBLE PRECISION   ABSTOL, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            IFAIL( * ), IWORK( * )
   33: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
   34: *      $                   W( * ), WORK( * ), Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DSBGVX computes selected eigenvalues, and optionally, eigenvectors
   44: *> of a real generalized symmetric-definite banded eigenproblem, of
   45: *> the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
   46: *> and banded, and B is also positive definite.  Eigenvalues and
   47: *> eigenvectors can be selected by specifying either all eigenvalues,
   48: *> a range of values or a range of indices for the desired eigenvalues.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] JOBZ
   55: *> \verbatim
   56: *>          JOBZ is CHARACTER*1
   57: *>          = 'N':  Compute eigenvalues only;
   58: *>          = 'V':  Compute eigenvalues and eigenvectors.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] RANGE
   62: *> \verbatim
   63: *>          RANGE is CHARACTER*1
   64: *>          = 'A': all eigenvalues will be found.
   65: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   66: *>                 will be found.
   67: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] UPLO
   71: *> \verbatim
   72: *>          UPLO is CHARACTER*1
   73: *>          = 'U':  Upper triangles of A and B are stored;
   74: *>          = 'L':  Lower triangles of A and B are stored.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>          The order of the matrices A and B.  N >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] KA
   84: *> \verbatim
   85: *>          KA is INTEGER
   86: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   87: *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] KB
   91: *> \verbatim
   92: *>          KB is INTEGER
   93: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
   94: *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] AB
   98: *> \verbatim
   99: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
  100: *>          On entry, the upper or lower triangle of the symmetric band
  101: *>          matrix A, stored in the first ka+1 rows of the array.  The
  102: *>          j-th column of A is stored in the j-th column of the array AB
  103: *>          as follows:
  104: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
  105: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
  106: *>
  107: *>          On exit, the contents of AB are destroyed.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDAB
  111: *> \verbatim
  112: *>          LDAB is INTEGER
  113: *>          The leading dimension of the array AB.  LDAB >= KA+1.
  114: *> \endverbatim
  115: *>
  116: *> \param[in,out] BB
  117: *> \verbatim
  118: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
  119: *>          On entry, the upper or lower triangle of the symmetric band
  120: *>          matrix B, stored in the first kb+1 rows of the array.  The
  121: *>          j-th column of B is stored in the j-th column of the array BB
  122: *>          as follows:
  123: *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
  124: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
  125: *>
  126: *>          On exit, the factor S from the split Cholesky factorization
  127: *>          B = S**T*S, as returned by DPBSTF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDBB
  131: *> \verbatim
  132: *>          LDBB is INTEGER
  133: *>          The leading dimension of the array BB.  LDBB >= KB+1.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] Q
  137: *> \verbatim
  138: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
  139: *>          If JOBZ = 'V', the n-by-n matrix used in the reduction of
  140: *>          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
  141: *>          and consequently C to tridiagonal form.
  142: *>          If JOBZ = 'N', the array Q is not referenced.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDQ
  146: *> \verbatim
  147: *>          LDQ is INTEGER
  148: *>          The leading dimension of the array Q.  If JOBZ = 'N',
  149: *>          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
  150: *> \endverbatim
  151: *>
  152: *> \param[in] VL
  153: *> \verbatim
  154: *>          VL is DOUBLE PRECISION
  155: *> \endverbatim
  156: *>
  157: *> \param[in] VU
  158: *> \verbatim
  159: *>          VU is DOUBLE PRECISION
  160: *>
  161: *>          If RANGE='V', the lower and upper bounds of the interval to
  162: *>          be searched for eigenvalues. VL < VU.
  163: *>          Not referenced if RANGE = 'A' or 'I'.
  164: *> \endverbatim
  165: *>
  166: *> \param[in] IL
  167: *> \verbatim
  168: *>          IL is INTEGER
  169: *> \endverbatim
  170: *>
  171: *> \param[in] IU
  172: *> \verbatim
  173: *>          IU is INTEGER
  174: *>
  175: *>          If RANGE='I', the indices (in ascending order) of the
  176: *>          smallest and largest eigenvalues to be returned.
  177: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  178: *>          Not referenced if RANGE = 'A' or 'V'.
  179: *> \endverbatim
  180: *>
  181: *> \param[in] ABSTOL
  182: *> \verbatim
  183: *>          ABSTOL is DOUBLE PRECISION
  184: *>          The absolute error tolerance for the eigenvalues.
  185: *>          An approximate eigenvalue is accepted as converged
  186: *>          when it is determined to lie in an interval [a,b]
  187: *>          of width less than or equal to
  188: *>
  189: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  190: *>
  191: *>          where EPS is the machine precision.  If ABSTOL is less than
  192: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  193: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  194: *>          by reducing A to tridiagonal form.
  195: *>
  196: *>          Eigenvalues will be computed most accurately when ABSTOL is
  197: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  198: *>          If this routine returns with INFO>0, indicating that some
  199: *>          eigenvectors did not converge, try setting ABSTOL to
  200: *>          2*DLAMCH('S').
  201: *> \endverbatim
  202: *>
  203: *> \param[out] M
  204: *> \verbatim
  205: *>          M is INTEGER
  206: *>          The total number of eigenvalues found.  0 <= M <= N.
  207: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  208: *> \endverbatim
  209: *>
  210: *> \param[out] W
  211: *> \verbatim
  212: *>          W is DOUBLE PRECISION array, dimension (N)
  213: *>          If INFO = 0, the eigenvalues in ascending order.
  214: *> \endverbatim
  215: *>
  216: *> \param[out] Z
  217: *> \verbatim
  218: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
  219: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  220: *>          eigenvectors, with the i-th column of Z holding the
  221: *>          eigenvector associated with W(i).  The eigenvectors are
  222: *>          normalized so Z**T*B*Z = I.
  223: *>          If JOBZ = 'N', then Z is not referenced.
  224: *> \endverbatim
  225: *>
  226: *> \param[in] LDZ
  227: *> \verbatim
  228: *>          LDZ is INTEGER
  229: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  230: *>          JOBZ = 'V', LDZ >= max(1,N).
  231: *> \endverbatim
  232: *>
  233: *> \param[out] WORK
  234: *> \verbatim
  235: *>          WORK is DOUBLE PRECISION array, dimension (7*N)
  236: *> \endverbatim
  237: *>
  238: *> \param[out] IWORK
  239: *> \verbatim
  240: *>          IWORK is INTEGER array, dimension (5*N)
  241: *> \endverbatim
  242: *>
  243: *> \param[out] IFAIL
  244: *> \verbatim
  245: *>          IFAIL is INTEGER array, dimension (M)
  246: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  247: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  248: *>          indices of the eigenvalues that failed to converge.
  249: *>          If JOBZ = 'N', then IFAIL is not referenced.
  250: *> \endverbatim
  251: *>
  252: *> \param[out] INFO
  253: *> \verbatim
  254: *>          INFO is INTEGER
  255: *>          = 0 : successful exit
  256: *>          < 0 : if INFO = -i, the i-th argument had an illegal value
  257: *>          <= N: if INFO = i, then i eigenvectors failed to converge.
  258: *>                  Their indices are stored in IFAIL.
  259: *>          > N : DPBSTF returned an error code; i.e.,
  260: *>                if INFO = N + i, for 1 <= i <= N, then the leading
  261: *>                minor of order i of B is not positive definite.
  262: *>                The factorization of B could not be completed and
  263: *>                no eigenvalues or eigenvectors were computed.
  264: *> \endverbatim
  265: *
  266: *  Authors:
  267: *  ========
  268: *
  269: *> \author Univ. of Tennessee 
  270: *> \author Univ. of California Berkeley 
  271: *> \author Univ. of Colorado Denver 
  272: *> \author NAG Ltd. 
  273: *
  274: *> \date November 2011
  275: *
  276: *> \ingroup doubleOTHEReigen
  277: *
  278: *> \par Contributors:
  279: *  ==================
  280: *>
  281: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  282: *
  283: *  =====================================================================
  284:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
  285:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
  286:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
  287: *
  288: *  -- LAPACK driver routine (version 3.4.0) --
  289: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  290: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  291: *     November 2011
  292: *
  293: *     .. Scalar Arguments ..
  294:       CHARACTER          JOBZ, RANGE, UPLO
  295:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
  296:      $                   N
  297:       DOUBLE PRECISION   ABSTOL, VL, VU
  298: *     ..
  299: *     .. Array Arguments ..
  300:       INTEGER            IFAIL( * ), IWORK( * )
  301:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
  302:      $                   W( * ), WORK( * ), Z( LDZ, * )
  303: *     ..
  304: *
  305: *  =====================================================================
  306: *
  307: *     .. Parameters ..
  308:       DOUBLE PRECISION   ZERO, ONE
  309:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  310: *     ..
  311: *     .. Local Scalars ..
  312:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  313:       CHARACTER          ORDER, VECT
  314:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  315:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
  316:       DOUBLE PRECISION   TMP1
  317: *     ..
  318: *     .. External Functions ..
  319:       LOGICAL            LSAME
  320:       EXTERNAL           LSAME
  321: *     ..
  322: *     .. External Subroutines ..
  323:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
  324:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
  325: *     ..
  326: *     .. Intrinsic Functions ..
  327:       INTRINSIC          MIN
  328: *     ..
  329: *     .. Executable Statements ..
  330: *
  331: *     Test the input parameters.
  332: *
  333:       WANTZ = LSAME( JOBZ, 'V' )
  334:       UPPER = LSAME( UPLO, 'U' )
  335:       ALLEIG = LSAME( RANGE, 'A' )
  336:       VALEIG = LSAME( RANGE, 'V' )
  337:       INDEIG = LSAME( RANGE, 'I' )
  338: *
  339:       INFO = 0
  340:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  341:          INFO = -1
  342:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  343:          INFO = -2
  344:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  345:          INFO = -3
  346:       ELSE IF( N.LT.0 ) THEN
  347:          INFO = -4
  348:       ELSE IF( KA.LT.0 ) THEN
  349:          INFO = -5
  350:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  351:          INFO = -6
  352:       ELSE IF( LDAB.LT.KA+1 ) THEN
  353:          INFO = -8
  354:       ELSE IF( LDBB.LT.KB+1 ) THEN
  355:          INFO = -10
  356:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  357:          INFO = -12
  358:       ELSE
  359:          IF( VALEIG ) THEN
  360:             IF( N.GT.0 .AND. VU.LE.VL )
  361:      $         INFO = -14
  362:          ELSE IF( INDEIG ) THEN
  363:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  364:                INFO = -15
  365:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  366:                INFO = -16
  367:             END IF
  368:          END IF
  369:       END IF
  370:       IF( INFO.EQ.0) THEN
  371:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  372:             INFO = -21
  373:          END IF
  374:       END IF
  375: *
  376:       IF( INFO.NE.0 ) THEN
  377:          CALL XERBLA( 'DSBGVX', -INFO )
  378:          RETURN
  379:       END IF
  380: *
  381: *     Quick return if possible
  382: *
  383:       M = 0
  384:       IF( N.EQ.0 )
  385:      $   RETURN
  386: *
  387: *     Form a split Cholesky factorization of B.
  388: *
  389:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  390:       IF( INFO.NE.0 ) THEN
  391:          INFO = N + INFO
  392:          RETURN
  393:       END IF
  394: *
  395: *     Transform problem to standard eigenvalue problem.
  396: *
  397:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  398:      $             WORK, IINFO )
  399: *
  400: *     Reduce symmetric band matrix to tridiagonal form.
  401: *
  402:       INDD = 1
  403:       INDE = INDD + N
  404:       INDWRK = INDE + N
  405:       IF( WANTZ ) THEN
  406:          VECT = 'U'
  407:       ELSE
  408:          VECT = 'N'
  409:       END IF
  410:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
  411:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  412: *
  413: *     If all eigenvalues are desired and ABSTOL is less than or equal
  414: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
  415: *     eigenvalue, then try DSTEBZ.
  416: *
  417:       TEST = .FALSE.
  418:       IF( INDEIG ) THEN
  419:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  420:             TEST = .TRUE.
  421:          END IF
  422:       END IF
  423:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  424:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
  425:          INDEE = INDWRK + 2*N
  426:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
  427:          IF( .NOT.WANTZ ) THEN
  428:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
  429:          ELSE
  430:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  431:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
  432:      $                   WORK( INDWRK ), INFO )
  433:             IF( INFO.EQ.0 ) THEN
  434:                DO 10 I = 1, N
  435:                   IFAIL( I ) = 0
  436:    10          CONTINUE
  437:             END IF
  438:          END IF
  439:          IF( INFO.EQ.0 ) THEN
  440:             M = N
  441:             GO TO 30
  442:          END IF
  443:          INFO = 0
  444:       END IF
  445: *
  446: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
  447: *     call DSTEIN.
  448: *
  449:       IF( WANTZ ) THEN
  450:          ORDER = 'B'
  451:       ELSE
  452:          ORDER = 'E'
  453:       END IF
  454:       INDIBL = 1
  455:       INDISP = INDIBL + N
  456:       INDIWO = INDISP + N
  457:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  458:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
  459:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
  460:      $             IWORK( INDIWO ), INFO )
  461: *
  462:       IF( WANTZ ) THEN
  463:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
  464:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  465:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
  466: *
  467: *        Apply transformation matrix used in reduction to tridiagonal
  468: *        form to eigenvectors returned by DSTEIN.
  469: *
  470:          DO 20 J = 1, M
  471:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  472:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
  473:      $                  Z( 1, J ), 1 )
  474:    20    CONTINUE
  475:       END IF
  476: *
  477:    30 CONTINUE
  478: *
  479: *     If eigenvalues are not in order, then sort them, along with
  480: *     eigenvectors.
  481: *
  482:       IF( WANTZ ) THEN
  483:          DO 50 J = 1, M - 1
  484:             I = 0
  485:             TMP1 = W( J )
  486:             DO 40 JJ = J + 1, M
  487:                IF( W( JJ ).LT.TMP1 ) THEN
  488:                   I = JJ
  489:                   TMP1 = W( JJ )
  490:                END IF
  491:    40       CONTINUE
  492: *
  493:             IF( I.NE.0 ) THEN
  494:                ITMP1 = IWORK( INDIBL+I-1 )
  495:                W( I ) = W( J )
  496:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  497:                W( J ) = TMP1
  498:                IWORK( INDIBL+J-1 ) = ITMP1
  499:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  500:                IF( INFO.NE.0 ) THEN
  501:                   ITMP1 = IFAIL( I )
  502:                   IFAIL( I ) = IFAIL( J )
  503:                   IFAIL( J ) = ITMP1
  504:                END IF
  505:             END IF
  506:    50    CONTINUE
  507:       END IF
  508: *
  509:       RETURN
  510: *
  511: *     End of DSBGVX
  512: *
  513:       END

CVSweb interface <joel.bertrand@systella.fr>