Annotation of rpl/lapack/lapack/dsbgvx.f, revision 1.15

1.13      bertrand    1: *> \brief \b DSBGVX
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSBGVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                     22: *                          LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                     23: *                          LDZ, WORK, IWORK, IFAIL, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                     28: *      $                   N
                     29: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            IFAIL( * ), IWORK( * )
                     33: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                     34: *      $                   W( * ), WORK( * ), Z( LDZ, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DSBGVX computes selected eigenvalues, and optionally, eigenvectors
                     44: *> of a real generalized symmetric-definite banded eigenproblem, of
                     45: *> the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
                     46: *> and banded, and B is also positive definite.  Eigenvalues and
                     47: *> eigenvectors can be selected by specifying either all eigenvalues,
                     48: *> a range of values or a range of indices for the desired eigenvalues.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] JOBZ
                     55: *> \verbatim
                     56: *>          JOBZ is CHARACTER*1
                     57: *>          = 'N':  Compute eigenvalues only;
                     58: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] RANGE
                     62: *> \verbatim
                     63: *>          RANGE is CHARACTER*1
                     64: *>          = 'A': all eigenvalues will be found.
                     65: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     66: *>                 will be found.
                     67: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] UPLO
                     71: *> \verbatim
                     72: *>          UPLO is CHARACTER*1
                     73: *>          = 'U':  Upper triangles of A and B are stored;
                     74: *>          = 'L':  Lower triangles of A and B are stored.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] N
                     78: *> \verbatim
                     79: *>          N is INTEGER
                     80: *>          The order of the matrices A and B.  N >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KA
                     84: *> \verbatim
                     85: *>          KA is INTEGER
                     86: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     87: *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] KB
                     91: *> \verbatim
                     92: *>          KB is INTEGER
                     93: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
                     94: *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] AB
                     98: *> \verbatim
                     99: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                    100: *>          On entry, the upper or lower triangle of the symmetric band
                    101: *>          matrix A, stored in the first ka+1 rows of the array.  The
                    102: *>          j-th column of A is stored in the j-th column of the array AB
                    103: *>          as follows:
                    104: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                    105: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                    106: *>
                    107: *>          On exit, the contents of AB are destroyed.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] LDAB
                    111: *> \verbatim
                    112: *>          LDAB is INTEGER
                    113: *>          The leading dimension of the array AB.  LDAB >= KA+1.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in,out] BB
                    117: *> \verbatim
                    118: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
                    119: *>          On entry, the upper or lower triangle of the symmetric band
                    120: *>          matrix B, stored in the first kb+1 rows of the array.  The
                    121: *>          j-th column of B is stored in the j-th column of the array BB
                    122: *>          as follows:
                    123: *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                    124: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                    125: *>
                    126: *>          On exit, the factor S from the split Cholesky factorization
                    127: *>          B = S**T*S, as returned by DPBSTF.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] LDBB
                    131: *> \verbatim
                    132: *>          LDBB is INTEGER
                    133: *>          The leading dimension of the array BB.  LDBB >= KB+1.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] Q
                    137: *> \verbatim
                    138: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
                    139: *>          If JOBZ = 'V', the n-by-n matrix used in the reduction of
                    140: *>          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
                    141: *>          and consequently C to tridiagonal form.
                    142: *>          If JOBZ = 'N', the array Q is not referenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDQ
                    146: *> \verbatim
                    147: *>          LDQ is INTEGER
                    148: *>          The leading dimension of the array Q.  If JOBZ = 'N',
                    149: *>          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] VL
                    153: *> \verbatim
                    154: *>          VL is DOUBLE PRECISION
1.14      bertrand  155: *>
                    156: *>          If RANGE='V', the lower bound of the interval to
                    157: *>          be searched for eigenvalues. VL < VU.
                    158: *>          Not referenced if RANGE = 'A' or 'I'.
1.8       bertrand  159: *> \endverbatim
                    160: *>
                    161: *> \param[in] VU
                    162: *> \verbatim
                    163: *>          VU is DOUBLE PRECISION
                    164: *>
1.14      bertrand  165: *>          If RANGE='V', the upper bound of the interval to
1.8       bertrand  166: *>          be searched for eigenvalues. VL < VU.
                    167: *>          Not referenced if RANGE = 'A' or 'I'.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in] IL
                    171: *> \verbatim
                    172: *>          IL is INTEGER
1.14      bertrand  173: *>
                    174: *>          If RANGE='I', the index of the
                    175: *>          smallest eigenvalue to be returned.
                    176: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    177: *>          Not referenced if RANGE = 'A' or 'V'.
1.8       bertrand  178: *> \endverbatim
                    179: *>
                    180: *> \param[in] IU
                    181: *> \verbatim
                    182: *>          IU is INTEGER
                    183: *>
1.14      bertrand  184: *>          If RANGE='I', the index of the
                    185: *>          largest eigenvalue to be returned.
1.8       bertrand  186: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    187: *>          Not referenced if RANGE = 'A' or 'V'.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] ABSTOL
                    191: *> \verbatim
                    192: *>          ABSTOL is DOUBLE PRECISION
                    193: *>          The absolute error tolerance for the eigenvalues.
                    194: *>          An approximate eigenvalue is accepted as converged
                    195: *>          when it is determined to lie in an interval [a,b]
                    196: *>          of width less than or equal to
                    197: *>
                    198: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    199: *>
                    200: *>          where EPS is the machine precision.  If ABSTOL is less than
                    201: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    202: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    203: *>          by reducing A to tridiagonal form.
                    204: *>
                    205: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    206: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    207: *>          If this routine returns with INFO>0, indicating that some
                    208: *>          eigenvectors did not converge, try setting ABSTOL to
                    209: *>          2*DLAMCH('S').
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[out] M
                    213: *> \verbatim
                    214: *>          M is INTEGER
                    215: *>          The total number of eigenvalues found.  0 <= M <= N.
                    216: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] W
                    220: *> \verbatim
                    221: *>          W is DOUBLE PRECISION array, dimension (N)
                    222: *>          If INFO = 0, the eigenvalues in ascending order.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[out] Z
                    226: *> \verbatim
                    227: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    228: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    229: *>          eigenvectors, with the i-th column of Z holding the
                    230: *>          eigenvector associated with W(i).  The eigenvectors are
                    231: *>          normalized so Z**T*B*Z = I.
                    232: *>          If JOBZ = 'N', then Z is not referenced.
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[in] LDZ
                    236: *> \verbatim
                    237: *>          LDZ is INTEGER
                    238: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    239: *>          JOBZ = 'V', LDZ >= max(1,N).
                    240: *> \endverbatim
                    241: *>
                    242: *> \param[out] WORK
                    243: *> \verbatim
                    244: *>          WORK is DOUBLE PRECISION array, dimension (7*N)
                    245: *> \endverbatim
                    246: *>
                    247: *> \param[out] IWORK
                    248: *> \verbatim
                    249: *>          IWORK is INTEGER array, dimension (5*N)
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] IFAIL
                    253: *> \verbatim
                    254: *>          IFAIL is INTEGER array, dimension (M)
                    255: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    256: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    257: *>          indices of the eigenvalues that failed to converge.
                    258: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    259: *> \endverbatim
                    260: *>
                    261: *> \param[out] INFO
                    262: *> \verbatim
                    263: *>          INFO is INTEGER
                    264: *>          = 0 : successful exit
                    265: *>          < 0 : if INFO = -i, the i-th argument had an illegal value
                    266: *>          <= N: if INFO = i, then i eigenvectors failed to converge.
                    267: *>                  Their indices are stored in IFAIL.
                    268: *>          > N : DPBSTF returned an error code; i.e.,
                    269: *>                if INFO = N + i, for 1 <= i <= N, then the leading
                    270: *>                minor of order i of B is not positive definite.
                    271: *>                The factorization of B could not be completed and
                    272: *>                no eigenvalues or eigenvectors were computed.
                    273: *> \endverbatim
                    274: *
                    275: *  Authors:
                    276: *  ========
                    277: *
                    278: *> \author Univ. of Tennessee 
                    279: *> \author Univ. of California Berkeley 
                    280: *> \author Univ. of Colorado Denver 
                    281: *> \author NAG Ltd. 
                    282: *
1.14      bertrand  283: *> \date June 2016
1.8       bertrand  284: *
                    285: *> \ingroup doubleOTHEReigen
                    286: *
                    287: *> \par Contributors:
                    288: *  ==================
                    289: *>
                    290: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    291: *
                    292: *  =====================================================================
1.1       bertrand  293:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                    294:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                    295:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
                    296: *
1.14      bertrand  297: *  -- LAPACK driver routine (version 3.6.1) --
1.1       bertrand  298: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    299: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14      bertrand  300: *     June 2016
1.1       bertrand  301: *
                    302: *     .. Scalar Arguments ..
                    303:       CHARACTER          JOBZ, RANGE, UPLO
                    304:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                    305:      $                   N
                    306:       DOUBLE PRECISION   ABSTOL, VL, VU
                    307: *     ..
                    308: *     .. Array Arguments ..
                    309:       INTEGER            IFAIL( * ), IWORK( * )
                    310:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                    311:      $                   W( * ), WORK( * ), Z( LDZ, * )
                    312: *     ..
                    313: *
                    314: *  =====================================================================
                    315: *
                    316: *     .. Parameters ..
                    317:       DOUBLE PRECISION   ZERO, ONE
                    318:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    319: *     ..
                    320: *     .. Local Scalars ..
                    321:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
                    322:       CHARACTER          ORDER, VECT
                    323:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
                    324:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
                    325:       DOUBLE PRECISION   TMP1
                    326: *     ..
                    327: *     .. External Functions ..
                    328:       LOGICAL            LSAME
                    329:       EXTERNAL           LSAME
                    330: *     ..
                    331: *     .. External Subroutines ..
                    332:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
                    333:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    334: *     ..
                    335: *     .. Intrinsic Functions ..
                    336:       INTRINSIC          MIN
                    337: *     ..
                    338: *     .. Executable Statements ..
                    339: *
                    340: *     Test the input parameters.
                    341: *
                    342:       WANTZ = LSAME( JOBZ, 'V' )
                    343:       UPPER = LSAME( UPLO, 'U' )
                    344:       ALLEIG = LSAME( RANGE, 'A' )
                    345:       VALEIG = LSAME( RANGE, 'V' )
                    346:       INDEIG = LSAME( RANGE, 'I' )
                    347: *
                    348:       INFO = 0
                    349:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    350:          INFO = -1
                    351:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    352:          INFO = -2
                    353:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    354:          INFO = -3
                    355:       ELSE IF( N.LT.0 ) THEN
                    356:          INFO = -4
                    357:       ELSE IF( KA.LT.0 ) THEN
                    358:          INFO = -5
                    359:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    360:          INFO = -6
                    361:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    362:          INFO = -8
                    363:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    364:          INFO = -10
                    365:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
                    366:          INFO = -12
                    367:       ELSE
                    368:          IF( VALEIG ) THEN
                    369:             IF( N.GT.0 .AND. VU.LE.VL )
                    370:      $         INFO = -14
                    371:          ELSE IF( INDEIG ) THEN
                    372:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    373:                INFO = -15
                    374:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    375:                INFO = -16
                    376:             END IF
                    377:          END IF
                    378:       END IF
                    379:       IF( INFO.EQ.0) THEN
                    380:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    381:             INFO = -21
                    382:          END IF
                    383:       END IF
                    384: *
                    385:       IF( INFO.NE.0 ) THEN
                    386:          CALL XERBLA( 'DSBGVX', -INFO )
                    387:          RETURN
                    388:       END IF
                    389: *
                    390: *     Quick return if possible
                    391: *
                    392:       M = 0
                    393:       IF( N.EQ.0 )
                    394:      $   RETURN
                    395: *
                    396: *     Form a split Cholesky factorization of B.
                    397: *
                    398:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    399:       IF( INFO.NE.0 ) THEN
                    400:          INFO = N + INFO
                    401:          RETURN
                    402:       END IF
                    403: *
                    404: *     Transform problem to standard eigenvalue problem.
                    405: *
                    406:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
                    407:      $             WORK, IINFO )
                    408: *
                    409: *     Reduce symmetric band matrix to tridiagonal form.
                    410: *
                    411:       INDD = 1
                    412:       INDE = INDD + N
                    413:       INDWRK = INDE + N
                    414:       IF( WANTZ ) THEN
                    415:          VECT = 'U'
                    416:       ELSE
                    417:          VECT = 'N'
                    418:       END IF
                    419:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
                    420:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    421: *
                    422: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    423: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
                    424: *     eigenvalue, then try DSTEBZ.
                    425: *
                    426:       TEST = .FALSE.
                    427:       IF( INDEIG ) THEN
                    428:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    429:             TEST = .TRUE.
                    430:          END IF
                    431:       END IF
                    432:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    433:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    434:          INDEE = INDWRK + 2*N
                    435:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    436:          IF( .NOT.WANTZ ) THEN
                    437:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    438:          ELSE
                    439:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    440:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    441:      $                   WORK( INDWRK ), INFO )
                    442:             IF( INFO.EQ.0 ) THEN
                    443:                DO 10 I = 1, N
                    444:                   IFAIL( I ) = 0
                    445:    10          CONTINUE
                    446:             END IF
                    447:          END IF
                    448:          IF( INFO.EQ.0 ) THEN
                    449:             M = N
                    450:             GO TO 30
                    451:          END IF
                    452:          INFO = 0
                    453:       END IF
                    454: *
                    455: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
                    456: *     call DSTEIN.
                    457: *
                    458:       IF( WANTZ ) THEN
                    459:          ORDER = 'B'
                    460:       ELSE
                    461:          ORDER = 'E'
                    462:       END IF
                    463:       INDIBL = 1
                    464:       INDISP = INDIBL + N
                    465:       INDIWO = INDISP + N
                    466:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
                    467:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    468:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    469:      $             IWORK( INDIWO ), INFO )
                    470: *
                    471:       IF( WANTZ ) THEN
                    472:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    473:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    474:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    475: *
                    476: *        Apply transformation matrix used in reduction to tridiagonal
                    477: *        form to eigenvectors returned by DSTEIN.
                    478: *
                    479:          DO 20 J = 1, M
                    480:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    481:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
                    482:      $                  Z( 1, J ), 1 )
                    483:    20    CONTINUE
                    484:       END IF
                    485: *
                    486:    30 CONTINUE
                    487: *
                    488: *     If eigenvalues are not in order, then sort them, along with
                    489: *     eigenvectors.
                    490: *
                    491:       IF( WANTZ ) THEN
                    492:          DO 50 J = 1, M - 1
                    493:             I = 0
                    494:             TMP1 = W( J )
                    495:             DO 40 JJ = J + 1, M
                    496:                IF( W( JJ ).LT.TMP1 ) THEN
                    497:                   I = JJ
                    498:                   TMP1 = W( JJ )
                    499:                END IF
                    500:    40       CONTINUE
                    501: *
                    502:             IF( I.NE.0 ) THEN
                    503:                ITMP1 = IWORK( INDIBL+I-1 )
                    504:                W( I ) = W( J )
                    505:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    506:                W( J ) = TMP1
                    507:                IWORK( INDIBL+J-1 ) = ITMP1
                    508:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    509:                IF( INFO.NE.0 ) THEN
                    510:                   ITMP1 = IFAIL( I )
                    511:                   IFAIL( I ) = IFAIL( J )
                    512:                   IFAIL( J ) = ITMP1
                    513:                END IF
                    514:             END IF
                    515:    50    CONTINUE
                    516:       END IF
                    517: *
                    518:       RETURN
                    519: *
                    520: *     End of DSBGVX
                    521: *
                    522:       END

CVSweb interface <joel.bertrand@systella.fr>