Annotation of rpl/lapack/lapack/dsbgvx.f, revision 1.10

1.8       bertrand    1: *> \brief \b DSBGST
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DSBGVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                     22: *                          LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                     23: *                          LDZ, WORK, IWORK, IFAIL, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                     28: *      $                   N
                     29: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       INTEGER            IFAIL( * ), IWORK( * )
                     33: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                     34: *      $                   W( * ), WORK( * ), Z( LDZ, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DSBGVX computes selected eigenvalues, and optionally, eigenvectors
                     44: *> of a real generalized symmetric-definite banded eigenproblem, of
                     45: *> the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
                     46: *> and banded, and B is also positive definite.  Eigenvalues and
                     47: *> eigenvectors can be selected by specifying either all eigenvalues,
                     48: *> a range of values or a range of indices for the desired eigenvalues.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] JOBZ
                     55: *> \verbatim
                     56: *>          JOBZ is CHARACTER*1
                     57: *>          = 'N':  Compute eigenvalues only;
                     58: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] RANGE
                     62: *> \verbatim
                     63: *>          RANGE is CHARACTER*1
                     64: *>          = 'A': all eigenvalues will be found.
                     65: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     66: *>                 will be found.
                     67: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] UPLO
                     71: *> \verbatim
                     72: *>          UPLO is CHARACTER*1
                     73: *>          = 'U':  Upper triangles of A and B are stored;
                     74: *>          = 'L':  Lower triangles of A and B are stored.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] N
                     78: *> \verbatim
                     79: *>          N is INTEGER
                     80: *>          The order of the matrices A and B.  N >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KA
                     84: *> \verbatim
                     85: *>          KA is INTEGER
                     86: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     87: *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] KB
                     91: *> \verbatim
                     92: *>          KB is INTEGER
                     93: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
                     94: *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] AB
                     98: *> \verbatim
                     99: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                    100: *>          On entry, the upper or lower triangle of the symmetric band
                    101: *>          matrix A, stored in the first ka+1 rows of the array.  The
                    102: *>          j-th column of A is stored in the j-th column of the array AB
                    103: *>          as follows:
                    104: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                    105: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                    106: *>
                    107: *>          On exit, the contents of AB are destroyed.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] LDAB
                    111: *> \verbatim
                    112: *>          LDAB is INTEGER
                    113: *>          The leading dimension of the array AB.  LDAB >= KA+1.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in,out] BB
                    117: *> \verbatim
                    118: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
                    119: *>          On entry, the upper or lower triangle of the symmetric band
                    120: *>          matrix B, stored in the first kb+1 rows of the array.  The
                    121: *>          j-th column of B is stored in the j-th column of the array BB
                    122: *>          as follows:
                    123: *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                    124: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                    125: *>
                    126: *>          On exit, the factor S from the split Cholesky factorization
                    127: *>          B = S**T*S, as returned by DPBSTF.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] LDBB
                    131: *> \verbatim
                    132: *>          LDBB is INTEGER
                    133: *>          The leading dimension of the array BB.  LDBB >= KB+1.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] Q
                    137: *> \verbatim
                    138: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
                    139: *>          If JOBZ = 'V', the n-by-n matrix used in the reduction of
                    140: *>          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
                    141: *>          and consequently C to tridiagonal form.
                    142: *>          If JOBZ = 'N', the array Q is not referenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDQ
                    146: *> \verbatim
                    147: *>          LDQ is INTEGER
                    148: *>          The leading dimension of the array Q.  If JOBZ = 'N',
                    149: *>          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] VL
                    153: *> \verbatim
                    154: *>          VL is DOUBLE PRECISION
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] VU
                    158: *> \verbatim
                    159: *>          VU is DOUBLE PRECISION
                    160: *>
                    161: *>          If RANGE='V', the lower and upper bounds of the interval to
                    162: *>          be searched for eigenvalues. VL < VU.
                    163: *>          Not referenced if RANGE = 'A' or 'I'.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] IL
                    167: *> \verbatim
                    168: *>          IL is INTEGER
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] IU
                    172: *> \verbatim
                    173: *>          IU is INTEGER
                    174: *>
                    175: *>          If RANGE='I', the indices (in ascending order) of the
                    176: *>          smallest and largest eigenvalues to be returned.
                    177: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    178: *>          Not referenced if RANGE = 'A' or 'V'.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] ABSTOL
                    182: *> \verbatim
                    183: *>          ABSTOL is DOUBLE PRECISION
                    184: *>          The absolute error tolerance for the eigenvalues.
                    185: *>          An approximate eigenvalue is accepted as converged
                    186: *>          when it is determined to lie in an interval [a,b]
                    187: *>          of width less than or equal to
                    188: *>
                    189: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    190: *>
                    191: *>          where EPS is the machine precision.  If ABSTOL is less than
                    192: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    193: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    194: *>          by reducing A to tridiagonal form.
                    195: *>
                    196: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    197: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    198: *>          If this routine returns with INFO>0, indicating that some
                    199: *>          eigenvectors did not converge, try setting ABSTOL to
                    200: *>          2*DLAMCH('S').
                    201: *> \endverbatim
                    202: *>
                    203: *> \param[out] M
                    204: *> \verbatim
                    205: *>          M is INTEGER
                    206: *>          The total number of eigenvalues found.  0 <= M <= N.
                    207: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    208: *> \endverbatim
                    209: *>
                    210: *> \param[out] W
                    211: *> \verbatim
                    212: *>          W is DOUBLE PRECISION array, dimension (N)
                    213: *>          If INFO = 0, the eigenvalues in ascending order.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[out] Z
                    217: *> \verbatim
                    218: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    219: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    220: *>          eigenvectors, with the i-th column of Z holding the
                    221: *>          eigenvector associated with W(i).  The eigenvectors are
                    222: *>          normalized so Z**T*B*Z = I.
                    223: *>          If JOBZ = 'N', then Z is not referenced.
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[in] LDZ
                    227: *> \verbatim
                    228: *>          LDZ is INTEGER
                    229: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    230: *>          JOBZ = 'V', LDZ >= max(1,N).
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[out] WORK
                    234: *> \verbatim
                    235: *>          WORK is DOUBLE PRECISION array, dimension (7*N)
                    236: *> \endverbatim
                    237: *>
                    238: *> \param[out] IWORK
                    239: *> \verbatim
                    240: *>          IWORK is INTEGER array, dimension (5*N)
                    241: *> \endverbatim
                    242: *>
                    243: *> \param[out] IFAIL
                    244: *> \verbatim
                    245: *>          IFAIL is INTEGER array, dimension (M)
                    246: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    247: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    248: *>          indices of the eigenvalues that failed to converge.
                    249: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] INFO
                    253: *> \verbatim
                    254: *>          INFO is INTEGER
                    255: *>          = 0 : successful exit
                    256: *>          < 0 : if INFO = -i, the i-th argument had an illegal value
                    257: *>          <= N: if INFO = i, then i eigenvectors failed to converge.
                    258: *>                  Their indices are stored in IFAIL.
                    259: *>          > N : DPBSTF returned an error code; i.e.,
                    260: *>                if INFO = N + i, for 1 <= i <= N, then the leading
                    261: *>                minor of order i of B is not positive definite.
                    262: *>                The factorization of B could not be completed and
                    263: *>                no eigenvalues or eigenvectors were computed.
                    264: *> \endverbatim
                    265: *
                    266: *  Authors:
                    267: *  ========
                    268: *
                    269: *> \author Univ. of Tennessee 
                    270: *> \author Univ. of California Berkeley 
                    271: *> \author Univ. of Colorado Denver 
                    272: *> \author NAG Ltd. 
                    273: *
                    274: *> \date November 2011
                    275: *
                    276: *> \ingroup doubleOTHEReigen
                    277: *
                    278: *> \par Contributors:
                    279: *  ==================
                    280: *>
                    281: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    282: *
                    283: *  =====================================================================
1.1       bertrand  284:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                    285:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                    286:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
                    287: *
1.8       bertrand  288: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  289: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    290: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  291: *     November 2011
1.1       bertrand  292: *
                    293: *     .. Scalar Arguments ..
                    294:       CHARACTER          JOBZ, RANGE, UPLO
                    295:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                    296:      $                   N
                    297:       DOUBLE PRECISION   ABSTOL, VL, VU
                    298: *     ..
                    299: *     .. Array Arguments ..
                    300:       INTEGER            IFAIL( * ), IWORK( * )
                    301:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                    302:      $                   W( * ), WORK( * ), Z( LDZ, * )
                    303: *     ..
                    304: *
                    305: *  =====================================================================
                    306: *
                    307: *     .. Parameters ..
                    308:       DOUBLE PRECISION   ZERO, ONE
                    309:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    310: *     ..
                    311: *     .. Local Scalars ..
                    312:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
                    313:       CHARACTER          ORDER, VECT
                    314:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
                    315:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
                    316:       DOUBLE PRECISION   TMP1
                    317: *     ..
                    318: *     .. External Functions ..
                    319:       LOGICAL            LSAME
                    320:       EXTERNAL           LSAME
                    321: *     ..
                    322: *     .. External Subroutines ..
                    323:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
                    324:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
                    325: *     ..
                    326: *     .. Intrinsic Functions ..
                    327:       INTRINSIC          MIN
                    328: *     ..
                    329: *     .. Executable Statements ..
                    330: *
                    331: *     Test the input parameters.
                    332: *
                    333:       WANTZ = LSAME( JOBZ, 'V' )
                    334:       UPPER = LSAME( UPLO, 'U' )
                    335:       ALLEIG = LSAME( RANGE, 'A' )
                    336:       VALEIG = LSAME( RANGE, 'V' )
                    337:       INDEIG = LSAME( RANGE, 'I' )
                    338: *
                    339:       INFO = 0
                    340:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    341:          INFO = -1
                    342:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    343:          INFO = -2
                    344:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    345:          INFO = -3
                    346:       ELSE IF( N.LT.0 ) THEN
                    347:          INFO = -4
                    348:       ELSE IF( KA.LT.0 ) THEN
                    349:          INFO = -5
                    350:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    351:          INFO = -6
                    352:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    353:          INFO = -8
                    354:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    355:          INFO = -10
                    356:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
                    357:          INFO = -12
                    358:       ELSE
                    359:          IF( VALEIG ) THEN
                    360:             IF( N.GT.0 .AND. VU.LE.VL )
                    361:      $         INFO = -14
                    362:          ELSE IF( INDEIG ) THEN
                    363:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    364:                INFO = -15
                    365:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    366:                INFO = -16
                    367:             END IF
                    368:          END IF
                    369:       END IF
                    370:       IF( INFO.EQ.0) THEN
                    371:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    372:             INFO = -21
                    373:          END IF
                    374:       END IF
                    375: *
                    376:       IF( INFO.NE.0 ) THEN
                    377:          CALL XERBLA( 'DSBGVX', -INFO )
                    378:          RETURN
                    379:       END IF
                    380: *
                    381: *     Quick return if possible
                    382: *
                    383:       M = 0
                    384:       IF( N.EQ.0 )
                    385:      $   RETURN
                    386: *
                    387: *     Form a split Cholesky factorization of B.
                    388: *
                    389:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    390:       IF( INFO.NE.0 ) THEN
                    391:          INFO = N + INFO
                    392:          RETURN
                    393:       END IF
                    394: *
                    395: *     Transform problem to standard eigenvalue problem.
                    396: *
                    397:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
                    398:      $             WORK, IINFO )
                    399: *
                    400: *     Reduce symmetric band matrix to tridiagonal form.
                    401: *
                    402:       INDD = 1
                    403:       INDE = INDD + N
                    404:       INDWRK = INDE + N
                    405:       IF( WANTZ ) THEN
                    406:          VECT = 'U'
                    407:       ELSE
                    408:          VECT = 'N'
                    409:       END IF
                    410:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
                    411:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    412: *
                    413: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    414: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
                    415: *     eigenvalue, then try DSTEBZ.
                    416: *
                    417:       TEST = .FALSE.
                    418:       IF( INDEIG ) THEN
                    419:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    420:             TEST = .TRUE.
                    421:          END IF
                    422:       END IF
                    423:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    424:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    425:          INDEE = INDWRK + 2*N
                    426:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    427:          IF( .NOT.WANTZ ) THEN
                    428:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    429:          ELSE
                    430:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    431:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    432:      $                   WORK( INDWRK ), INFO )
                    433:             IF( INFO.EQ.0 ) THEN
                    434:                DO 10 I = 1, N
                    435:                   IFAIL( I ) = 0
                    436:    10          CONTINUE
                    437:             END IF
                    438:          END IF
                    439:          IF( INFO.EQ.0 ) THEN
                    440:             M = N
                    441:             GO TO 30
                    442:          END IF
                    443:          INFO = 0
                    444:       END IF
                    445: *
                    446: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
                    447: *     call DSTEIN.
                    448: *
                    449:       IF( WANTZ ) THEN
                    450:          ORDER = 'B'
                    451:       ELSE
                    452:          ORDER = 'E'
                    453:       END IF
                    454:       INDIBL = 1
                    455:       INDISP = INDIBL + N
                    456:       INDIWO = INDISP + N
                    457:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
                    458:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    459:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    460:      $             IWORK( INDIWO ), INFO )
                    461: *
                    462:       IF( WANTZ ) THEN
                    463:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    464:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    465:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    466: *
                    467: *        Apply transformation matrix used in reduction to tridiagonal
                    468: *        form to eigenvectors returned by DSTEIN.
                    469: *
                    470:          DO 20 J = 1, M
                    471:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    472:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
                    473:      $                  Z( 1, J ), 1 )
                    474:    20    CONTINUE
                    475:       END IF
                    476: *
                    477:    30 CONTINUE
                    478: *
                    479: *     If eigenvalues are not in order, then sort them, along with
                    480: *     eigenvectors.
                    481: *
                    482:       IF( WANTZ ) THEN
                    483:          DO 50 J = 1, M - 1
                    484:             I = 0
                    485:             TMP1 = W( J )
                    486:             DO 40 JJ = J + 1, M
                    487:                IF( W( JJ ).LT.TMP1 ) THEN
                    488:                   I = JJ
                    489:                   TMP1 = W( JJ )
                    490:                END IF
                    491:    40       CONTINUE
                    492: *
                    493:             IF( I.NE.0 ) THEN
                    494:                ITMP1 = IWORK( INDIBL+I-1 )
                    495:                W( I ) = W( J )
                    496:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    497:                W( J ) = TMP1
                    498:                IWORK( INDIBL+J-1 ) = ITMP1
                    499:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    500:                IF( INFO.NE.0 ) THEN
                    501:                   ITMP1 = IFAIL( I )
                    502:                   IFAIL( I ) = IFAIL( J )
                    503:                   IFAIL( J ) = ITMP1
                    504:                END IF
                    505:             END IF
                    506:    50    CONTINUE
                    507:       END IF
                    508: *
                    509:       RETURN
                    510: *
                    511: *     End of DSBGVX
                    512: *
                    513:       END

CVSweb interface <joel.bertrand@systella.fr>