Annotation of rpl/lapack/lapack/dsbgvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
        !             2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
        !             3:      $                   LDZ, WORK, IWORK, IFAIL, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE, UPLO
        !            12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
        !            13:      $                   N
        !            14:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            IFAIL( * ), IWORK( * )
        !            18:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
        !            19:      $                   W( * ), WORK( * ), Z( LDZ, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DSBGVX computes selected eigenvalues, and optionally, eigenvectors
        !            26: *  of a real generalized symmetric-definite banded eigenproblem, of
        !            27: *  the form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric
        !            28: *  and banded, and B is also positive definite.  Eigenvalues and
        !            29: *  eigenvectors can be selected by specifying either all eigenvalues,
        !            30: *  a range of values or a range of indices for the desired eigenvalues.
        !            31: *
        !            32: *  Arguments
        !            33: *  =========
        !            34: *
        !            35: *  JOBZ    (input) CHARACTER*1
        !            36: *          = 'N':  Compute eigenvalues only;
        !            37: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            38: *
        !            39: *  RANGE   (input) CHARACTER*1
        !            40: *          = 'A': all eigenvalues will be found.
        !            41: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            42: *                 will be found.
        !            43: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            44: *
        !            45: *  UPLO    (input) CHARACTER*1
        !            46: *          = 'U':  Upper triangles of A and B are stored;
        !            47: *          = 'L':  Lower triangles of A and B are stored.
        !            48: *
        !            49: *  N       (input) INTEGER
        !            50: *          The order of the matrices A and B.  N >= 0.
        !            51: *
        !            52: *  KA      (input) INTEGER
        !            53: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            54: *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
        !            55: *
        !            56: *  KB      (input) INTEGER
        !            57: *          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            58: *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
        !            59: *
        !            60: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
        !            61: *          On entry, the upper or lower triangle of the symmetric band
        !            62: *          matrix A, stored in the first ka+1 rows of the array.  The
        !            63: *          j-th column of A is stored in the j-th column of the array AB
        !            64: *          as follows:
        !            65: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            66: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            67: *
        !            68: *          On exit, the contents of AB are destroyed.
        !            69: *
        !            70: *  LDAB    (input) INTEGER
        !            71: *          The leading dimension of the array AB.  LDAB >= KA+1.
        !            72: *
        !            73: *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
        !            74: *          On entry, the upper or lower triangle of the symmetric band
        !            75: *          matrix B, stored in the first kb+1 rows of the array.  The
        !            76: *          j-th column of B is stored in the j-th column of the array BB
        !            77: *          as follows:
        !            78: *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !            79: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !            80: *
        !            81: *          On exit, the factor S from the split Cholesky factorization
        !            82: *          B = S**T*S, as returned by DPBSTF.
        !            83: *
        !            84: *  LDBB    (input) INTEGER
        !            85: *          The leading dimension of the array BB.  LDBB >= KB+1.
        !            86: *
        !            87: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ, N)
        !            88: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
        !            89: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
        !            90: *          and consequently C to tridiagonal form.
        !            91: *          If JOBZ = 'N', the array Q is not referenced.
        !            92: *
        !            93: *  LDQ     (input) INTEGER
        !            94: *          The leading dimension of the array Q.  If JOBZ = 'N',
        !            95: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
        !            96: *
        !            97: *  VL      (input) DOUBLE PRECISION
        !            98: *  VU      (input) DOUBLE PRECISION
        !            99: *          If RANGE='V', the lower and upper bounds of the interval to
        !           100: *          be searched for eigenvalues. VL < VU.
        !           101: *          Not referenced if RANGE = 'A' or 'I'.
        !           102: *
        !           103: *  IL      (input) INTEGER
        !           104: *  IU      (input) INTEGER
        !           105: *          If RANGE='I', the indices (in ascending order) of the
        !           106: *          smallest and largest eigenvalues to be returned.
        !           107: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           108: *          Not referenced if RANGE = 'A' or 'V'.
        !           109: *
        !           110: *  ABSTOL  (input) DOUBLE PRECISION
        !           111: *          The absolute error tolerance for the eigenvalues.
        !           112: *          An approximate eigenvalue is accepted as converged
        !           113: *          when it is determined to lie in an interval [a,b]
        !           114: *          of width less than or equal to
        !           115: *
        !           116: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           117: *
        !           118: *          where EPS is the machine precision.  If ABSTOL is less than
        !           119: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !           120: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           121: *          by reducing A to tridiagonal form.
        !           122: *
        !           123: *          Eigenvalues will be computed most accurately when ABSTOL is
        !           124: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           125: *          If this routine returns with INFO>0, indicating that some
        !           126: *          eigenvectors did not converge, try setting ABSTOL to
        !           127: *          2*DLAMCH('S').
        !           128: *
        !           129: *  M       (output) INTEGER
        !           130: *          The total number of eigenvalues found.  0 <= M <= N.
        !           131: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           132: *
        !           133: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           134: *          If INFO = 0, the eigenvalues in ascending order.
        !           135: *
        !           136: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
        !           137: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           138: *          eigenvectors, with the i-th column of Z holding the
        !           139: *          eigenvector associated with W(i).  The eigenvectors are
        !           140: *          normalized so Z**T*B*Z = I.
        !           141: *          If JOBZ = 'N', then Z is not referenced.
        !           142: *
        !           143: *  LDZ     (input) INTEGER
        !           144: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           145: *          JOBZ = 'V', LDZ >= max(1,N).
        !           146: *
        !           147: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (7*N)
        !           148: *
        !           149: *  IWORK   (workspace/output) INTEGER array, dimension (5*N)
        !           150: *
        !           151: *  IFAIL   (output) INTEGER array, dimension (M)
        !           152: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           153: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           154: *          indices of the eigenvalues that failed to converge.
        !           155: *          If JOBZ = 'N', then IFAIL is not referenced.
        !           156: *
        !           157: *  INFO    (output) INTEGER
        !           158: *          = 0 : successful exit
        !           159: *          < 0 : if INFO = -i, the i-th argument had an illegal value
        !           160: *          <= N: if INFO = i, then i eigenvectors failed to converge.
        !           161: *                  Their indices are stored in IFAIL.
        !           162: *          > N : DPBSTF returned an error code; i.e.,
        !           163: *                if INFO = N + i, for 1 <= i <= N, then the leading
        !           164: *                minor of order i of B is not positive definite.
        !           165: *                The factorization of B could not be completed and
        !           166: *                no eigenvalues or eigenvectors were computed.
        !           167: *
        !           168: *  Further Details
        !           169: *  ===============
        !           170: *
        !           171: *  Based on contributions by
        !           172: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           173: *
        !           174: *  =====================================================================
        !           175: *
        !           176: *     .. Parameters ..
        !           177:       DOUBLE PRECISION   ZERO, ONE
        !           178:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           179: *     ..
        !           180: *     .. Local Scalars ..
        !           181:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
        !           182:       CHARACTER          ORDER, VECT
        !           183:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
        !           184:      $                   INDIWO, INDWRK, ITMP1, J, JJ, NSPLIT
        !           185:       DOUBLE PRECISION   TMP1
        !           186: *     ..
        !           187: *     .. External Functions ..
        !           188:       LOGICAL            LSAME
        !           189:       EXTERNAL           LSAME
        !           190: *     ..
        !           191: *     .. External Subroutines ..
        !           192:       EXTERNAL           DCOPY, DGEMV, DLACPY, DPBSTF, DSBGST, DSBTRD,
        !           193:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
        !           194: *     ..
        !           195: *     .. Intrinsic Functions ..
        !           196:       INTRINSIC          MIN
        !           197: *     ..
        !           198: *     .. Executable Statements ..
        !           199: *
        !           200: *     Test the input parameters.
        !           201: *
        !           202:       WANTZ = LSAME( JOBZ, 'V' )
        !           203:       UPPER = LSAME( UPLO, 'U' )
        !           204:       ALLEIG = LSAME( RANGE, 'A' )
        !           205:       VALEIG = LSAME( RANGE, 'V' )
        !           206:       INDEIG = LSAME( RANGE, 'I' )
        !           207: *
        !           208:       INFO = 0
        !           209:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           210:          INFO = -1
        !           211:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           212:          INFO = -2
        !           213:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           214:          INFO = -3
        !           215:       ELSE IF( N.LT.0 ) THEN
        !           216:          INFO = -4
        !           217:       ELSE IF( KA.LT.0 ) THEN
        !           218:          INFO = -5
        !           219:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
        !           220:          INFO = -6
        !           221:       ELSE IF( LDAB.LT.KA+1 ) THEN
        !           222:          INFO = -8
        !           223:       ELSE IF( LDBB.LT.KB+1 ) THEN
        !           224:          INFO = -10
        !           225:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
        !           226:          INFO = -12
        !           227:       ELSE
        !           228:          IF( VALEIG ) THEN
        !           229:             IF( N.GT.0 .AND. VU.LE.VL )
        !           230:      $         INFO = -14
        !           231:          ELSE IF( INDEIG ) THEN
        !           232:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           233:                INFO = -15
        !           234:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           235:                INFO = -16
        !           236:             END IF
        !           237:          END IF
        !           238:       END IF
        !           239:       IF( INFO.EQ.0) THEN
        !           240:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           241:             INFO = -21
        !           242:          END IF
        !           243:       END IF
        !           244: *
        !           245:       IF( INFO.NE.0 ) THEN
        !           246:          CALL XERBLA( 'DSBGVX', -INFO )
        !           247:          RETURN
        !           248:       END IF
        !           249: *
        !           250: *     Quick return if possible
        !           251: *
        !           252:       M = 0
        !           253:       IF( N.EQ.0 )
        !           254:      $   RETURN
        !           255: *
        !           256: *     Form a split Cholesky factorization of B.
        !           257: *
        !           258:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
        !           259:       IF( INFO.NE.0 ) THEN
        !           260:          INFO = N + INFO
        !           261:          RETURN
        !           262:       END IF
        !           263: *
        !           264: *     Transform problem to standard eigenvalue problem.
        !           265: *
        !           266:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
        !           267:      $             WORK, IINFO )
        !           268: *
        !           269: *     Reduce symmetric band matrix to tridiagonal form.
        !           270: *
        !           271:       INDD = 1
        !           272:       INDE = INDD + N
        !           273:       INDWRK = INDE + N
        !           274:       IF( WANTZ ) THEN
        !           275:          VECT = 'U'
        !           276:       ELSE
        !           277:          VECT = 'N'
        !           278:       END IF
        !           279:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, WORK( INDD ),
        !           280:      $             WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
        !           281: *
        !           282: *     If all eigenvalues are desired and ABSTOL is less than or equal
        !           283: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
        !           284: *     eigenvalue, then try DSTEBZ.
        !           285: *
        !           286:       TEST = .FALSE.
        !           287:       IF( INDEIG ) THEN
        !           288:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           289:             TEST = .TRUE.
        !           290:          END IF
        !           291:       END IF
        !           292:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
        !           293:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
        !           294:          INDEE = INDWRK + 2*N
        !           295:          CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
        !           296:          IF( .NOT.WANTZ ) THEN
        !           297:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
        !           298:          ELSE
        !           299:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
        !           300:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
        !           301:      $                   WORK( INDWRK ), INFO )
        !           302:             IF( INFO.EQ.0 ) THEN
        !           303:                DO 10 I = 1, N
        !           304:                   IFAIL( I ) = 0
        !           305:    10          CONTINUE
        !           306:             END IF
        !           307:          END IF
        !           308:          IF( INFO.EQ.0 ) THEN
        !           309:             M = N
        !           310:             GO TO 30
        !           311:          END IF
        !           312:          INFO = 0
        !           313:       END IF
        !           314: *
        !           315: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
        !           316: *     call DSTEIN.
        !           317: *
        !           318:       IF( WANTZ ) THEN
        !           319:          ORDER = 'B'
        !           320:       ELSE
        !           321:          ORDER = 'E'
        !           322:       END IF
        !           323:       INDIBL = 1
        !           324:       INDISP = INDIBL + N
        !           325:       INDIWO = INDISP + N
        !           326:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
        !           327:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
        !           328:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
        !           329:      $             IWORK( INDIWO ), INFO )
        !           330: *
        !           331:       IF( WANTZ ) THEN
        !           332:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
        !           333:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           334:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
        !           335: *
        !           336: *        Apply transformation matrix used in reduction to tridiagonal
        !           337: *        form to eigenvectors returned by DSTEIN.
        !           338: *
        !           339:          DO 20 J = 1, M
        !           340:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
        !           341:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
        !           342:      $                  Z( 1, J ), 1 )
        !           343:    20    CONTINUE
        !           344:       END IF
        !           345: *
        !           346:    30 CONTINUE
        !           347: *
        !           348: *     If eigenvalues are not in order, then sort them, along with
        !           349: *     eigenvectors.
        !           350: *
        !           351:       IF( WANTZ ) THEN
        !           352:          DO 50 J = 1, M - 1
        !           353:             I = 0
        !           354:             TMP1 = W( J )
        !           355:             DO 40 JJ = J + 1, M
        !           356:                IF( W( JJ ).LT.TMP1 ) THEN
        !           357:                   I = JJ
        !           358:                   TMP1 = W( JJ )
        !           359:                END IF
        !           360:    40       CONTINUE
        !           361: *
        !           362:             IF( I.NE.0 ) THEN
        !           363:                ITMP1 = IWORK( INDIBL+I-1 )
        !           364:                W( I ) = W( J )
        !           365:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           366:                W( J ) = TMP1
        !           367:                IWORK( INDIBL+J-1 ) = ITMP1
        !           368:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           369:                IF( INFO.NE.0 ) THEN
        !           370:                   ITMP1 = IFAIL( I )
        !           371:                   IFAIL( I ) = IFAIL( J )
        !           372:                   IFAIL( J ) = ITMP1
        !           373:                END IF
        !           374:             END IF
        !           375:    50    CONTINUE
        !           376:       END IF
        !           377: *
        !           378:       RETURN
        !           379: *
        !           380: *     End of DSBGVX
        !           381: *
        !           382:       END

CVSweb interface <joel.bertrand@systella.fr>