Annotation of rpl/lapack/lapack/dsbgvd.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DSBGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSBGVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
        !            22: *                          Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
        !            31: *      $                   WORK( * ), Z( LDZ, * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            41: *> of a real generalized symmetric-definite banded eigenproblem, of the
        !            42: *> form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
        !            43: *> banded, and B is also positive definite.  If eigenvectors are
        !            44: *> desired, it uses a divide and conquer algorithm.
        !            45: *>
        !            46: *> The divide and conquer algorithm makes very mild assumptions about
        !            47: *> floating point arithmetic. It will work on machines with a guard
        !            48: *> digit in add/subtract, or on those binary machines without guard
        !            49: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            50: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            51: *> without guard digits, but we know of none.
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] JOBZ
        !            58: *> \verbatim
        !            59: *>          JOBZ is CHARACTER*1
        !            60: *>          = 'N':  Compute eigenvalues only;
        !            61: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] UPLO
        !            65: *> \verbatim
        !            66: *>          UPLO is CHARACTER*1
        !            67: *>          = 'U':  Upper triangles of A and B are stored;
        !            68: *>          = 'L':  Lower triangles of A and B are stored.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] N
        !            72: *> \verbatim
        !            73: *>          N is INTEGER
        !            74: *>          The order of the matrices A and B.  N >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] KA
        !            78: *> \verbatim
        !            79: *>          KA is INTEGER
        !            80: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            81: *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] KB
        !            85: *> \verbatim
        !            86: *>          KB is INTEGER
        !            87: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            88: *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in,out] AB
        !            92: *> \verbatim
        !            93: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
        !            94: *>          On entry, the upper or lower triangle of the symmetric band
        !            95: *>          matrix A, stored in the first ka+1 rows of the array.  The
        !            96: *>          j-th column of A is stored in the j-th column of the array AB
        !            97: *>          as follows:
        !            98: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            99: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !           100: *>
        !           101: *>          On exit, the contents of AB are destroyed.
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] LDAB
        !           105: *> \verbatim
        !           106: *>          LDAB is INTEGER
        !           107: *>          The leading dimension of the array AB.  LDAB >= KA+1.
        !           108: *> \endverbatim
        !           109: *>
        !           110: *> \param[in,out] BB
        !           111: *> \verbatim
        !           112: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
        !           113: *>          On entry, the upper or lower triangle of the symmetric band
        !           114: *>          matrix B, stored in the first kb+1 rows of the array.  The
        !           115: *>          j-th column of B is stored in the j-th column of the array BB
        !           116: *>          as follows:
        !           117: *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !           118: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !           119: *>
        !           120: *>          On exit, the factor S from the split Cholesky factorization
        !           121: *>          B = S**T*S, as returned by DPBSTF.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDBB
        !           125: *> \verbatim
        !           126: *>          LDBB is INTEGER
        !           127: *>          The leading dimension of the array BB.  LDBB >= KB+1.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] W
        !           131: *> \verbatim
        !           132: *>          W is DOUBLE PRECISION array, dimension (N)
        !           133: *>          If INFO = 0, the eigenvalues in ascending order.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] Z
        !           137: *> \verbatim
        !           138: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
        !           139: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           140: *>          eigenvectors, with the i-th column of Z holding the
        !           141: *>          eigenvector associated with W(i).  The eigenvectors are
        !           142: *>          normalized so Z**T*B*Z = I.
        !           143: *>          If JOBZ = 'N', then Z is not referenced.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in] LDZ
        !           147: *> \verbatim
        !           148: *>          LDZ is INTEGER
        !           149: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           150: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] WORK
        !           154: *> \verbatim
        !           155: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[in] LWORK
        !           160: *> \verbatim
        !           161: *>          LWORK is INTEGER
        !           162: *>          The dimension of the array WORK.
        !           163: *>          If N <= 1,               LWORK >= 1.
        !           164: *>          If JOBZ = 'N' and N > 1, LWORK >= 3*N.
        !           165: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
        !           166: *>
        !           167: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           168: *>          only calculates the optimal sizes of the WORK and IWORK
        !           169: *>          arrays, returns these values as the first entries of the WORK
        !           170: *>          and IWORK arrays, and no error message related to LWORK or
        !           171: *>          LIWORK is issued by XERBLA.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[out] IWORK
        !           175: *> \verbatim
        !           176: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           177: *>          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in] LIWORK
        !           181: *> \verbatim
        !           182: *>          LIWORK is INTEGER
        !           183: *>          The dimension of the array IWORK.
        !           184: *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
        !           185: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           186: *>
        !           187: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           188: *>          routine only calculates the optimal sizes of the WORK and
        !           189: *>          IWORK arrays, returns these values as the first entries of
        !           190: *>          the WORK and IWORK arrays, and no error message related to
        !           191: *>          LWORK or LIWORK is issued by XERBLA.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] INFO
        !           195: *> \verbatim
        !           196: *>          INFO is INTEGER
        !           197: *>          = 0:  successful exit
        !           198: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           199: *>          > 0:  if INFO = i, and i is:
        !           200: *>             <= N:  the algorithm failed to converge:
        !           201: *>                    i off-diagonal elements of an intermediate
        !           202: *>                    tridiagonal form did not converge to zero;
        !           203: *>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
        !           204: *>                    returned INFO = i: B is not positive definite.
        !           205: *>                    The factorization of B could not be completed and
        !           206: *>                    no eigenvalues or eigenvectors were computed.
        !           207: *> \endverbatim
        !           208: *
        !           209: *  Authors:
        !           210: *  ========
        !           211: *
        !           212: *> \author Univ. of Tennessee 
        !           213: *> \author Univ. of California Berkeley 
        !           214: *> \author Univ. of Colorado Denver 
        !           215: *> \author NAG Ltd. 
        !           216: *
        !           217: *> \date November 2011
        !           218: *
        !           219: *> \ingroup doubleOTHEReigen
        !           220: *
        !           221: *> \par Contributors:
        !           222: *  ==================
        !           223: *>
        !           224: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           225: *
        !           226: *  =====================================================================
1.1       bertrand  227:       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
                    228:      $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
                    229: *
1.8     ! bertrand  230: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  233: *     November 2011
1.1       bertrand  234: *
                    235: *     .. Scalar Arguments ..
                    236:       CHARACTER          JOBZ, UPLO
                    237:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
                    238: *     ..
                    239: *     .. Array Arguments ..
                    240:       INTEGER            IWORK( * )
                    241:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                    242:      $                   WORK( * ), Z( LDZ, * )
                    243: *     ..
                    244: *
                    245: *  =====================================================================
                    246: *
                    247: *     .. Parameters ..
                    248:       DOUBLE PRECISION   ONE, ZERO
                    249:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       LOGICAL            LQUERY, UPPER, WANTZ
                    253:       CHARACTER          VECT
                    254:       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
                    255:      $                   LWMIN
                    256: *     ..
                    257: *     .. External Functions ..
                    258:       LOGICAL            LSAME
                    259:       EXTERNAL           LSAME
                    260: *     ..
                    261: *     .. External Subroutines ..
                    262:       EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
                    263:      $                   DSTERF, XERBLA
                    264: *     ..
                    265: *     .. Executable Statements ..
                    266: *
                    267: *     Test the input parameters.
                    268: *
                    269:       WANTZ = LSAME( JOBZ, 'V' )
                    270:       UPPER = LSAME( UPLO, 'U' )
                    271:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    272: *
                    273:       INFO = 0
                    274:       IF( N.LE.1 ) THEN
                    275:          LIWMIN = 1
                    276:          LWMIN = 1
                    277:       ELSE IF( WANTZ ) THEN
                    278:          LIWMIN = 3 + 5*N
                    279:          LWMIN = 1 + 5*N + 2*N**2
                    280:       ELSE
                    281:          LIWMIN = 1
                    282:          LWMIN = 2*N
                    283:       END IF
                    284: *
                    285:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    286:          INFO = -1
                    287:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    288:          INFO = -2
                    289:       ELSE IF( N.LT.0 ) THEN
                    290:          INFO = -3
                    291:       ELSE IF( KA.LT.0 ) THEN
                    292:          INFO = -4
                    293:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    294:          INFO = -5
                    295:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    296:          INFO = -7
                    297:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    298:          INFO = -9
                    299:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    300:          INFO = -12
                    301:       END IF
                    302: *
                    303:       IF( INFO.EQ.0 ) THEN
                    304:          WORK( 1 ) = LWMIN
                    305:          IWORK( 1 ) = LIWMIN
                    306: *
                    307:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    308:             INFO = -14
                    309:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    310:             INFO = -16
                    311:          END IF
                    312:       END IF
                    313: *
                    314:       IF( INFO.NE.0 ) THEN
                    315:          CALL XERBLA( 'DSBGVD', -INFO )
                    316:          RETURN
                    317:       ELSE IF( LQUERY ) THEN
                    318:          RETURN
                    319:       END IF
                    320: *
                    321: *     Quick return if possible
                    322: *
                    323:       IF( N.EQ.0 )
                    324:      $   RETURN
                    325: *
                    326: *     Form a split Cholesky factorization of B.
                    327: *
                    328:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    329:       IF( INFO.NE.0 ) THEN
                    330:          INFO = N + INFO
                    331:          RETURN
                    332:       END IF
                    333: *
                    334: *     Transform problem to standard eigenvalue problem.
                    335: *
                    336:       INDE = 1
                    337:       INDWRK = INDE + N
                    338:       INDWK2 = INDWRK + N*N
                    339:       LLWRK2 = LWORK - INDWK2 + 1
                    340:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
                    341:      $             WORK( INDWRK ), IINFO )
                    342: *
                    343: *     Reduce to tridiagonal form.
                    344: *
                    345:       IF( WANTZ ) THEN
                    346:          VECT = 'U'
                    347:       ELSE
                    348:          VECT = 'N'
                    349:       END IF
                    350:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    351:      $             WORK( INDWRK ), IINFO )
                    352: *
                    353: *     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
                    354: *
                    355:       IF( .NOT.WANTZ ) THEN
                    356:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    357:       ELSE
                    358:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    359:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    360:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
                    361:      $               ZERO, WORK( INDWK2 ), N )
                    362:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    363:       END IF
                    364: *
                    365:       WORK( 1 ) = LWMIN
                    366:       IWORK( 1 ) = LIWMIN
                    367: *
                    368:       RETURN
                    369: *
                    370: *     End of DSBGVD
                    371: *
                    372:       END

CVSweb interface <joel.bertrand@systella.fr>