Annotation of rpl/lapack/lapack/dsbgvd.f, revision 1.19

1.13      bertrand    1: *> \brief \b DSBGVD
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DSBGVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgvd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgvd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgvd.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
                     22: *                          Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
1.16      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                     31: *      $                   WORK( * ), Z( LDZ, * )
                     32: *       ..
1.16      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
                     41: *> of a real generalized symmetric-definite banded eigenproblem, of the
                     42: *> form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
                     43: *> banded, and B is also positive definite.  If eigenvectors are
                     44: *> desired, it uses a divide and conquer algorithm.
                     45: *>
                     46: *> The divide and conquer algorithm makes very mild assumptions about
                     47: *> floating point arithmetic. It will work on machines with a guard
                     48: *> digit in add/subtract, or on those binary machines without guard
                     49: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     50: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     51: *> without guard digits, but we know of none.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] JOBZ
                     58: *> \verbatim
                     59: *>          JOBZ is CHARACTER*1
                     60: *>          = 'N':  Compute eigenvalues only;
                     61: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] UPLO
                     65: *> \verbatim
                     66: *>          UPLO is CHARACTER*1
                     67: *>          = 'U':  Upper triangles of A and B are stored;
                     68: *>          = 'L':  Lower triangles of A and B are stored.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] N
                     72: *> \verbatim
                     73: *>          N is INTEGER
                     74: *>          The order of the matrices A and B.  N >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] KA
                     78: *> \verbatim
                     79: *>          KA is INTEGER
                     80: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     81: *>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] KB
                     85: *> \verbatim
                     86: *>          KB is INTEGER
                     87: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
                     88: *>          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in,out] AB
                     92: *> \verbatim
                     93: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     94: *>          On entry, the upper or lower triangle of the symmetric band
                     95: *>          matrix A, stored in the first ka+1 rows of the array.  The
                     96: *>          j-th column of A is stored in the j-th column of the array AB
                     97: *>          as follows:
                     98: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     99: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                    100: *>
                    101: *>          On exit, the contents of AB are destroyed.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LDAB
                    105: *> \verbatim
                    106: *>          LDAB is INTEGER
                    107: *>          The leading dimension of the array AB.  LDAB >= KA+1.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in,out] BB
                    111: *> \verbatim
                    112: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
                    113: *>          On entry, the upper or lower triangle of the symmetric band
                    114: *>          matrix B, stored in the first kb+1 rows of the array.  The
                    115: *>          j-th column of B is stored in the j-th column of the array BB
                    116: *>          as follows:
                    117: *>          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                    118: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                    119: *>
                    120: *>          On exit, the factor S from the split Cholesky factorization
                    121: *>          B = S**T*S, as returned by DPBSTF.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDBB
                    125: *> \verbatim
                    126: *>          LDBB is INTEGER
                    127: *>          The leading dimension of the array BB.  LDBB >= KB+1.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] W
                    131: *> \verbatim
                    132: *>          W is DOUBLE PRECISION array, dimension (N)
                    133: *>          If INFO = 0, the eigenvalues in ascending order.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] Z
                    137: *> \verbatim
                    138: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    139: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    140: *>          eigenvectors, with the i-th column of Z holding the
                    141: *>          eigenvector associated with W(i).  The eigenvectors are
                    142: *>          normalized so Z**T*B*Z = I.
                    143: *>          If JOBZ = 'N', then Z is not referenced.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] LDZ
                    147: *> \verbatim
                    148: *>          LDZ is INTEGER
                    149: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    150: *>          JOBZ = 'V', LDZ >= max(1,N).
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WORK
                    154: *> \verbatim
                    155: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] LWORK
                    160: *> \verbatim
                    161: *>          LWORK is INTEGER
                    162: *>          The dimension of the array WORK.
                    163: *>          If N <= 1,               LWORK >= 1.
1.16      bertrand  164: *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
1.8       bertrand  165: *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
                    166: *>
                    167: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    168: *>          only calculates the optimal sizes of the WORK and IWORK
                    169: *>          arrays, returns these values as the first entries of the WORK
                    170: *>          and IWORK arrays, and no error message related to LWORK or
                    171: *>          LIWORK is issued by XERBLA.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[out] IWORK
                    175: *> \verbatim
                    176: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    177: *>          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[in] LIWORK
                    181: *> \verbatim
                    182: *>          LIWORK is INTEGER
                    183: *>          The dimension of the array IWORK.
                    184: *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
                    185: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    186: *>
                    187: *>          If LIWORK = -1, then a workspace query is assumed; the
                    188: *>          routine only calculates the optimal sizes of the WORK and
                    189: *>          IWORK arrays, returns these values as the first entries of
                    190: *>          the WORK and IWORK arrays, and no error message related to
                    191: *>          LWORK or LIWORK is issued by XERBLA.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] INFO
                    195: *> \verbatim
                    196: *>          INFO is INTEGER
                    197: *>          = 0:  successful exit
                    198: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    199: *>          > 0:  if INFO = i, and i is:
                    200: *>             <= N:  the algorithm failed to converge:
                    201: *>                    i off-diagonal elements of an intermediate
                    202: *>                    tridiagonal form did not converge to zero;
                    203: *>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
                    204: *>                    returned INFO = i: B is not positive definite.
                    205: *>                    The factorization of B could not be completed and
                    206: *>                    no eigenvalues or eigenvectors were computed.
                    207: *> \endverbatim
                    208: *
                    209: *  Authors:
                    210: *  ========
                    211: *
1.16      bertrand  212: *> \author Univ. of Tennessee
                    213: *> \author Univ. of California Berkeley
                    214: *> \author Univ. of Colorado Denver
                    215: *> \author NAG Ltd.
1.8       bertrand  216: *
                    217: *> \ingroup doubleOTHEReigen
                    218: *
                    219: *> \par Contributors:
                    220: *  ==================
                    221: *>
                    222: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    223: *
                    224: *  =====================================================================
1.1       bertrand  225:       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
                    226:      $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
                    227: *
1.19    ! bertrand  228: *  -- LAPACK driver routine --
1.1       bertrand  229: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    230: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    231: *
                    232: *     .. Scalar Arguments ..
                    233:       CHARACTER          JOBZ, UPLO
                    234:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
                    235: *     ..
                    236: *     .. Array Arguments ..
                    237:       INTEGER            IWORK( * )
                    238:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                    239:      $                   WORK( * ), Z( LDZ, * )
                    240: *     ..
                    241: *
                    242: *  =====================================================================
                    243: *
                    244: *     .. Parameters ..
                    245:       DOUBLE PRECISION   ONE, ZERO
                    246:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    247: *     ..
                    248: *     .. Local Scalars ..
                    249:       LOGICAL            LQUERY, UPPER, WANTZ
                    250:       CHARACTER          VECT
                    251:       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
                    252:      $                   LWMIN
                    253: *     ..
                    254: *     .. External Functions ..
                    255:       LOGICAL            LSAME
                    256:       EXTERNAL           LSAME
                    257: *     ..
                    258: *     .. External Subroutines ..
                    259:       EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
                    260:      $                   DSTERF, XERBLA
                    261: *     ..
                    262: *     .. Executable Statements ..
                    263: *
                    264: *     Test the input parameters.
                    265: *
                    266:       WANTZ = LSAME( JOBZ, 'V' )
                    267:       UPPER = LSAME( UPLO, 'U' )
                    268:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    269: *
                    270:       INFO = 0
                    271:       IF( N.LE.1 ) THEN
                    272:          LIWMIN = 1
                    273:          LWMIN = 1
                    274:       ELSE IF( WANTZ ) THEN
                    275:          LIWMIN = 3 + 5*N
                    276:          LWMIN = 1 + 5*N + 2*N**2
                    277:       ELSE
                    278:          LIWMIN = 1
                    279:          LWMIN = 2*N
                    280:       END IF
                    281: *
                    282:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    283:          INFO = -1
                    284:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    285:          INFO = -2
                    286:       ELSE IF( N.LT.0 ) THEN
                    287:          INFO = -3
                    288:       ELSE IF( KA.LT.0 ) THEN
                    289:          INFO = -4
                    290:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    291:          INFO = -5
                    292:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    293:          INFO = -7
                    294:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    295:          INFO = -9
                    296:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    297:          INFO = -12
                    298:       END IF
                    299: *
                    300:       IF( INFO.EQ.0 ) THEN
                    301:          WORK( 1 ) = LWMIN
                    302:          IWORK( 1 ) = LIWMIN
                    303: *
                    304:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    305:             INFO = -14
                    306:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    307:             INFO = -16
                    308:          END IF
                    309:       END IF
                    310: *
                    311:       IF( INFO.NE.0 ) THEN
                    312:          CALL XERBLA( 'DSBGVD', -INFO )
                    313:          RETURN
                    314:       ELSE IF( LQUERY ) THEN
                    315:          RETURN
                    316:       END IF
                    317: *
                    318: *     Quick return if possible
                    319: *
                    320:       IF( N.EQ.0 )
                    321:      $   RETURN
                    322: *
                    323: *     Form a split Cholesky factorization of B.
                    324: *
                    325:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    326:       IF( INFO.NE.0 ) THEN
                    327:          INFO = N + INFO
                    328:          RETURN
                    329:       END IF
                    330: *
                    331: *     Transform problem to standard eigenvalue problem.
                    332: *
                    333:       INDE = 1
                    334:       INDWRK = INDE + N
                    335:       INDWK2 = INDWRK + N*N
                    336:       LLWRK2 = LWORK - INDWK2 + 1
                    337:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
1.14      bertrand  338:      $             WORK, IINFO )
1.1       bertrand  339: *
                    340: *     Reduce to tridiagonal form.
                    341: *
                    342:       IF( WANTZ ) THEN
                    343:          VECT = 'U'
                    344:       ELSE
                    345:          VECT = 'N'
                    346:       END IF
                    347:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    348:      $             WORK( INDWRK ), IINFO )
                    349: *
                    350: *     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
                    351: *
                    352:       IF( .NOT.WANTZ ) THEN
                    353:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    354:       ELSE
                    355:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
                    356:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
                    357:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
                    358:      $               ZERO, WORK( INDWK2 ), N )
                    359:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    360:       END IF
                    361: *
                    362:       WORK( 1 ) = LWMIN
                    363:       IWORK( 1 ) = LIWMIN
                    364: *
                    365:       RETURN
                    366: *
                    367: *     End of DSBGVD
                    368: *
                    369:       END

CVSweb interface <joel.bertrand@systella.fr>