Annotation of rpl/lapack/lapack/dsbgvd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
        !             2:      $                   Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
        !            16:      $                   WORK( * ), Z( LDZ, * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  DSBGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            23: *  of a real generalized symmetric-definite banded eigenproblem, of the
        !            24: *  form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and
        !            25: *  banded, and B is also positive definite.  If eigenvectors are
        !            26: *  desired, it uses a divide and conquer algorithm.
        !            27: *
        !            28: *  The divide and conquer algorithm makes very mild assumptions about
        !            29: *  floating point arithmetic. It will work on machines with a guard
        !            30: *  digit in add/subtract, or on those binary machines without guard
        !            31: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            32: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            33: *  without guard digits, but we know of none.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  JOBZ    (input) CHARACTER*1
        !            39: *          = 'N':  Compute eigenvalues only;
        !            40: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            41: *
        !            42: *  UPLO    (input) CHARACTER*1
        !            43: *          = 'U':  Upper triangles of A and B are stored;
        !            44: *          = 'L':  Lower triangles of A and B are stored.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrices A and B.  N >= 0.
        !            48: *
        !            49: *  KA      (input) INTEGER
        !            50: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            51: *          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
        !            52: *
        !            53: *  KB      (input) INTEGER
        !            54: *          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            55: *          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.
        !            56: *
        !            57: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
        !            58: *          On entry, the upper or lower triangle of the symmetric band
        !            59: *          matrix A, stored in the first ka+1 rows of the array.  The
        !            60: *          j-th column of A is stored in the j-th column of the array AB
        !            61: *          as follows:
        !            62: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            63: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            64: *
        !            65: *          On exit, the contents of AB are destroyed.
        !            66: *
        !            67: *  LDAB    (input) INTEGER
        !            68: *          The leading dimension of the array AB.  LDAB >= KA+1.
        !            69: *
        !            70: *  BB      (input/output) DOUBLE PRECISION array, dimension (LDBB, N)
        !            71: *          On entry, the upper or lower triangle of the symmetric band
        !            72: *          matrix B, stored in the first kb+1 rows of the array.  The
        !            73: *          j-th column of B is stored in the j-th column of the array BB
        !            74: *          as follows:
        !            75: *          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !            76: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !            77: *
        !            78: *          On exit, the factor S from the split Cholesky factorization
        !            79: *          B = S**T*S, as returned by DPBSTF.
        !            80: *
        !            81: *  LDBB    (input) INTEGER
        !            82: *          The leading dimension of the array BB.  LDBB >= KB+1.
        !            83: *
        !            84: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            85: *          If INFO = 0, the eigenvalues in ascending order.
        !            86: *
        !            87: *  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)
        !            88: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !            89: *          eigenvectors, with the i-th column of Z holding the
        !            90: *          eigenvector associated with W(i).  The eigenvectors are
        !            91: *          normalized so Z**T*B*Z = I.
        !            92: *          If JOBZ = 'N', then Z is not referenced.
        !            93: *
        !            94: *  LDZ     (input) INTEGER
        !            95: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            96: *          JOBZ = 'V', LDZ >= max(1,N).
        !            97: *
        !            98: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            99: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           100: *
        !           101: *  LWORK   (input) INTEGER
        !           102: *          The dimension of the array WORK.
        !           103: *          If N <= 1,               LWORK >= 1.
        !           104: *          If JOBZ = 'N' and N > 1, LWORK >= 3*N.
        !           105: *          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.
        !           106: *
        !           107: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           108: *          only calculates the optimal sizes of the WORK and IWORK
        !           109: *          arrays, returns these values as the first entries of the WORK
        !           110: *          and IWORK arrays, and no error message related to LWORK or
        !           111: *          LIWORK is issued by XERBLA.
        !           112: *
        !           113: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           114: *          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.
        !           115: *
        !           116: *  LIWORK  (input) INTEGER
        !           117: *          The dimension of the array IWORK.
        !           118: *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
        !           119: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           120: *
        !           121: *          If LIWORK = -1, then a workspace query is assumed; the
        !           122: *          routine only calculates the optimal sizes of the WORK and
        !           123: *          IWORK arrays, returns these values as the first entries of
        !           124: *          the WORK and IWORK arrays, and no error message related to
        !           125: *          LWORK or LIWORK is issued by XERBLA.
        !           126: *
        !           127: *  INFO    (output) INTEGER
        !           128: *          = 0:  successful exit
        !           129: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           130: *          > 0:  if INFO = i, and i is:
        !           131: *             <= N:  the algorithm failed to converge:
        !           132: *                    i off-diagonal elements of an intermediate
        !           133: *                    tridiagonal form did not converge to zero;
        !           134: *             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
        !           135: *                    returned INFO = i: B is not positive definite.
        !           136: *                    The factorization of B could not be completed and
        !           137: *                    no eigenvalues or eigenvectors were computed.
        !           138: *
        !           139: *  Further Details
        !           140: *  ===============
        !           141: *
        !           142: *  Based on contributions by
        !           143: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           144: *
        !           145: *  =====================================================================
        !           146: *
        !           147: *     .. Parameters ..
        !           148:       DOUBLE PRECISION   ONE, ZERO
        !           149:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           150: *     ..
        !           151: *     .. Local Scalars ..
        !           152:       LOGICAL            LQUERY, UPPER, WANTZ
        !           153:       CHARACTER          VECT
        !           154:       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLWRK2,
        !           155:      $                   LWMIN
        !           156: *     ..
        !           157: *     .. External Functions ..
        !           158:       LOGICAL            LSAME
        !           159:       EXTERNAL           LSAME
        !           160: *     ..
        !           161: *     .. External Subroutines ..
        !           162:       EXTERNAL           DGEMM, DLACPY, DPBSTF, DSBGST, DSBTRD, DSTEDC,
        !           163:      $                   DSTERF, XERBLA
        !           164: *     ..
        !           165: *     .. Executable Statements ..
        !           166: *
        !           167: *     Test the input parameters.
        !           168: *
        !           169:       WANTZ = LSAME( JOBZ, 'V' )
        !           170:       UPPER = LSAME( UPLO, 'U' )
        !           171:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           172: *
        !           173:       INFO = 0
        !           174:       IF( N.LE.1 ) THEN
        !           175:          LIWMIN = 1
        !           176:          LWMIN = 1
        !           177:       ELSE IF( WANTZ ) THEN
        !           178:          LIWMIN = 3 + 5*N
        !           179:          LWMIN = 1 + 5*N + 2*N**2
        !           180:       ELSE
        !           181:          LIWMIN = 1
        !           182:          LWMIN = 2*N
        !           183:       END IF
        !           184: *
        !           185:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           186:          INFO = -1
        !           187:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           188:          INFO = -2
        !           189:       ELSE IF( N.LT.0 ) THEN
        !           190:          INFO = -3
        !           191:       ELSE IF( KA.LT.0 ) THEN
        !           192:          INFO = -4
        !           193:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
        !           194:          INFO = -5
        !           195:       ELSE IF( LDAB.LT.KA+1 ) THEN
        !           196:          INFO = -7
        !           197:       ELSE IF( LDBB.LT.KB+1 ) THEN
        !           198:          INFO = -9
        !           199:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           200:          INFO = -12
        !           201:       END IF
        !           202: *
        !           203:       IF( INFO.EQ.0 ) THEN
        !           204:          WORK( 1 ) = LWMIN
        !           205:          IWORK( 1 ) = LIWMIN
        !           206: *
        !           207:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           208:             INFO = -14
        !           209:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           210:             INFO = -16
        !           211:          END IF
        !           212:       END IF
        !           213: *
        !           214:       IF( INFO.NE.0 ) THEN
        !           215:          CALL XERBLA( 'DSBGVD', -INFO )
        !           216:          RETURN
        !           217:       ELSE IF( LQUERY ) THEN
        !           218:          RETURN
        !           219:       END IF
        !           220: *
        !           221: *     Quick return if possible
        !           222: *
        !           223:       IF( N.EQ.0 )
        !           224:      $   RETURN
        !           225: *
        !           226: *     Form a split Cholesky factorization of B.
        !           227: *
        !           228:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
        !           229:       IF( INFO.NE.0 ) THEN
        !           230:          INFO = N + INFO
        !           231:          RETURN
        !           232:       END IF
        !           233: *
        !           234: *     Transform problem to standard eigenvalue problem.
        !           235: *
        !           236:       INDE = 1
        !           237:       INDWRK = INDE + N
        !           238:       INDWK2 = INDWRK + N*N
        !           239:       LLWRK2 = LWORK - INDWK2 + 1
        !           240:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
        !           241:      $             WORK( INDWRK ), IINFO )
        !           242: *
        !           243: *     Reduce to tridiagonal form.
        !           244: *
        !           245:       IF( WANTZ ) THEN
        !           246:          VECT = 'U'
        !           247:       ELSE
        !           248:          VECT = 'N'
        !           249:       END IF
        !           250:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
        !           251:      $             WORK( INDWRK ), IINFO )
        !           252: *
        !           253: *     For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
        !           254: *
        !           255:       IF( .NOT.WANTZ ) THEN
        !           256:          CALL DSTERF( N, W, WORK( INDE ), INFO )
        !           257:       ELSE
        !           258:          CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
        !           259:      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
        !           260:          CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
        !           261:      $               ZERO, WORK( INDWK2 ), N )
        !           262:          CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
        !           263:       END IF
        !           264: *
        !           265:       WORK( 1 ) = LWMIN
        !           266:       IWORK( 1 ) = LIWMIN
        !           267: *
        !           268:       RETURN
        !           269: *
        !           270: *     End of DSBGVD
        !           271: *
        !           272:       END

CVSweb interface <joel.bertrand@systella.fr>