Annotation of rpl/lapack/lapack/dsbgv.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DSBGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DSBGV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
        !            22: *                         LDZ, WORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
        !            30: *      $                   WORK( * ), Z( LDZ, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DSBGV computes all the eigenvalues, and optionally, the eigenvectors
        !            40: *> of a real generalized symmetric-definite banded eigenproblem, of
        !            41: *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
        !            42: *> and banded, and B is also positive definite.
        !            43: *> \endverbatim
        !            44: *
        !            45: *  Arguments:
        !            46: *  ==========
        !            47: *
        !            48: *> \param[in] JOBZ
        !            49: *> \verbatim
        !            50: *>          JOBZ is CHARACTER*1
        !            51: *>          = 'N':  Compute eigenvalues only;
        !            52: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            53: *> \endverbatim
        !            54: *>
        !            55: *> \param[in] UPLO
        !            56: *> \verbatim
        !            57: *>          UPLO is CHARACTER*1
        !            58: *>          = 'U':  Upper triangles of A and B are stored;
        !            59: *>          = 'L':  Lower triangles of A and B are stored.
        !            60: *> \endverbatim
        !            61: *>
        !            62: *> \param[in] N
        !            63: *> \verbatim
        !            64: *>          N is INTEGER
        !            65: *>          The order of the matrices A and B.  N >= 0.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] KA
        !            69: *> \verbatim
        !            70: *>          KA is INTEGER
        !            71: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            72: *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] KB
        !            76: *> \verbatim
        !            77: *>          KB is INTEGER
        !            78: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            79: *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in,out] AB
        !            83: *> \verbatim
        !            84: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
        !            85: *>          On entry, the upper or lower triangle of the symmetric band
        !            86: *>          matrix A, stored in the first ka+1 rows of the array.  The
        !            87: *>          j-th column of A is stored in the j-th column of the array AB
        !            88: *>          as follows:
        !            89: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            90: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            91: *>
        !            92: *>          On exit, the contents of AB are destroyed.
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[in] LDAB
        !            96: *> \verbatim
        !            97: *>          LDAB is INTEGER
        !            98: *>          The leading dimension of the array AB.  LDAB >= KA+1.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[in,out] BB
        !           102: *> \verbatim
        !           103: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
        !           104: *>          On entry, the upper or lower triangle of the symmetric band
        !           105: *>          matrix B, stored in the first kb+1 rows of the array.  The
        !           106: *>          j-th column of B is stored in the j-th column of the array BB
        !           107: *>          as follows:
        !           108: *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !           109: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !           110: *>
        !           111: *>          On exit, the factor S from the split Cholesky factorization
        !           112: *>          B = S**T*S, as returned by DPBSTF.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] LDBB
        !           116: *> \verbatim
        !           117: *>          LDBB is INTEGER
        !           118: *>          The leading dimension of the array BB.  LDBB >= KB+1.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[out] W
        !           122: *> \verbatim
        !           123: *>          W is DOUBLE PRECISION array, dimension (N)
        !           124: *>          If INFO = 0, the eigenvalues in ascending order.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] Z
        !           128: *> \verbatim
        !           129: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
        !           130: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           131: *>          eigenvectors, with the i-th column of Z holding the
        !           132: *>          eigenvector associated with W(i). The eigenvectors are
        !           133: *>          normalized so that Z**T*B*Z = I.
        !           134: *>          If JOBZ = 'N', then Z is not referenced.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[in] LDZ
        !           138: *> \verbatim
        !           139: *>          LDZ is INTEGER
        !           140: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           141: *>          JOBZ = 'V', LDZ >= N.
        !           142: *> \endverbatim
        !           143: *>
        !           144: *> \param[out] WORK
        !           145: *> \verbatim
        !           146: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[out] INFO
        !           150: *> \verbatim
        !           151: *>          INFO is INTEGER
        !           152: *>          = 0:  successful exit
        !           153: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           154: *>          > 0:  if INFO = i, and i is:
        !           155: *>             <= N:  the algorithm failed to converge:
        !           156: *>                    i off-diagonal elements of an intermediate
        !           157: *>                    tridiagonal form did not converge to zero;
        !           158: *>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
        !           159: *>                    returned INFO = i: B is not positive definite.
        !           160: *>                    The factorization of B could not be completed and
        !           161: *>                    no eigenvalues or eigenvectors were computed.
        !           162: *> \endverbatim
        !           163: *
        !           164: *  Authors:
        !           165: *  ========
        !           166: *
        !           167: *> \author Univ. of Tennessee 
        !           168: *> \author Univ. of California Berkeley 
        !           169: *> \author Univ. of Colorado Denver 
        !           170: *> \author NAG Ltd. 
        !           171: *
        !           172: *> \date November 2011
        !           173: *
        !           174: *> \ingroup doubleOTHEReigen
        !           175: *
        !           176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                    178:      $                  LDZ, WORK, INFO )
                    179: *
1.8     ! bertrand  180: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  183: *     November 2011
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          JOBZ, UPLO
                    187:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                    191:      $                   WORK( * ), Z( LDZ, * )
                    192: *     ..
                    193: *
                    194: *  =====================================================================
                    195: *
                    196: *     .. Local Scalars ..
                    197:       LOGICAL            UPPER, WANTZ
                    198:       CHARACTER          VECT
                    199:       INTEGER            IINFO, INDE, INDWRK
                    200: *     ..
                    201: *     .. External Functions ..
                    202:       LOGICAL            LSAME
                    203:       EXTERNAL           LSAME
                    204: *     ..
                    205: *     .. External Subroutines ..
                    206:       EXTERNAL           DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA
                    207: *     ..
                    208: *     .. Executable Statements ..
                    209: *
                    210: *     Test the input parameters.
                    211: *
                    212:       WANTZ = LSAME( JOBZ, 'V' )
                    213:       UPPER = LSAME( UPLO, 'U' )
                    214: *
                    215:       INFO = 0
                    216:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    217:          INFO = -1
                    218:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    219:          INFO = -2
                    220:       ELSE IF( N.LT.0 ) THEN
                    221:          INFO = -3
                    222:       ELSE IF( KA.LT.0 ) THEN
                    223:          INFO = -4
                    224:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    225:          INFO = -5
                    226:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    227:          INFO = -7
                    228:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    229:          INFO = -9
                    230:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    231:          INFO = -12
                    232:       END IF
                    233:       IF( INFO.NE.0 ) THEN
                    234:          CALL XERBLA( 'DSBGV ', -INFO )
                    235:          RETURN
                    236:       END IF
                    237: *
                    238: *     Quick return if possible
                    239: *
                    240:       IF( N.EQ.0 )
                    241:      $   RETURN
                    242: *
                    243: *     Form a split Cholesky factorization of B.
                    244: *
                    245:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    246:       IF( INFO.NE.0 ) THEN
                    247:          INFO = N + INFO
                    248:          RETURN
                    249:       END IF
                    250: *
                    251: *     Transform problem to standard eigenvalue problem.
                    252: *
                    253:       INDE = 1
                    254:       INDWRK = INDE + N
                    255:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
                    256:      $             WORK( INDWRK ), IINFO )
                    257: *
                    258: *     Reduce to tridiagonal form.
                    259: *
                    260:       IF( WANTZ ) THEN
                    261:          VECT = 'U'
                    262:       ELSE
                    263:          VECT = 'N'
                    264:       END IF
                    265:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    266:      $             WORK( INDWRK ), IINFO )
                    267: *
                    268: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR.
                    269: *
                    270:       IF( .NOT.WANTZ ) THEN
                    271:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    272:       ELSE
                    273:          CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    274:      $                INFO )
                    275:       END IF
                    276:       RETURN
                    277: *
                    278: *     End of DSBGV
                    279: *
                    280:       END

CVSweb interface <joel.bertrand@systella.fr>