Annotation of rpl/lapack/lapack/dsbgv.f, revision 1.18

1.13      bertrand    1: *> \brief \b DSBGV
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DSBGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbgv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbgv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbgv.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                     22: *                         LDZ, WORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                     30: *      $                   WORK( * ), Z( LDZ, * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DSBGV computes all the eigenvalues, and optionally, the eigenvectors
                     40: *> of a real generalized symmetric-definite banded eigenproblem, of
                     41: *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
                     42: *> and banded, and B is also positive definite.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] JOBZ
                     49: *> \verbatim
                     50: *>          JOBZ is CHARACTER*1
                     51: *>          = 'N':  Compute eigenvalues only;
                     52: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] UPLO
                     56: *> \verbatim
                     57: *>          UPLO is CHARACTER*1
                     58: *>          = 'U':  Upper triangles of A and B are stored;
                     59: *>          = 'L':  Lower triangles of A and B are stored.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] N
                     63: *> \verbatim
                     64: *>          N is INTEGER
                     65: *>          The order of the matrices A and B.  N >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] KA
                     69: *> \verbatim
                     70: *>          KA is INTEGER
                     71: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     72: *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] KB
                     76: *> \verbatim
                     77: *>          KB is INTEGER
                     78: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
                     79: *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in,out] AB
                     83: *> \verbatim
                     84: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     85: *>          On entry, the upper or lower triangle of the symmetric band
                     86: *>          matrix A, stored in the first ka+1 rows of the array.  The
                     87: *>          j-th column of A is stored in the j-th column of the array AB
                     88: *>          as follows:
                     89: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     90: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                     91: *>
                     92: *>          On exit, the contents of AB are destroyed.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDAB
                     96: *> \verbatim
                     97: *>          LDAB is INTEGER
                     98: *>          The leading dimension of the array AB.  LDAB >= KA+1.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in,out] BB
                    102: *> \verbatim
                    103: *>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
                    104: *>          On entry, the upper or lower triangle of the symmetric band
                    105: *>          matrix B, stored in the first kb+1 rows of the array.  The
                    106: *>          j-th column of B is stored in the j-th column of the array BB
                    107: *>          as follows:
                    108: *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                    109: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                    110: *>
                    111: *>          On exit, the factor S from the split Cholesky factorization
                    112: *>          B = S**T*S, as returned by DPBSTF.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDBB
                    116: *> \verbatim
                    117: *>          LDBB is INTEGER
                    118: *>          The leading dimension of the array BB.  LDBB >= KB+1.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[out] W
                    122: *> \verbatim
                    123: *>          W is DOUBLE PRECISION array, dimension (N)
                    124: *>          If INFO = 0, the eigenvalues in ascending order.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] Z
                    128: *> \verbatim
                    129: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    130: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    131: *>          eigenvectors, with the i-th column of Z holding the
                    132: *>          eigenvector associated with W(i). The eigenvectors are
                    133: *>          normalized so that Z**T*B*Z = I.
                    134: *>          If JOBZ = 'N', then Z is not referenced.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LDZ
                    138: *> \verbatim
                    139: *>          LDZ is INTEGER
                    140: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    141: *>          JOBZ = 'V', LDZ >= N.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] WORK
                    145: *> \verbatim
                    146: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] INFO
                    150: *> \verbatim
                    151: *>          INFO is INTEGER
                    152: *>          = 0:  successful exit
                    153: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    154: *>          > 0:  if INFO = i, and i is:
                    155: *>             <= N:  the algorithm failed to converge:
                    156: *>                    i off-diagonal elements of an intermediate
                    157: *>                    tridiagonal form did not converge to zero;
                    158: *>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
                    159: *>                    returned INFO = i: B is not positive definite.
                    160: *>                    The factorization of B could not be completed and
                    161: *>                    no eigenvalues or eigenvectors were computed.
                    162: *> \endverbatim
                    163: *
                    164: *  Authors:
                    165: *  ========
                    166: *
1.15      bertrand  167: *> \author Univ. of Tennessee
                    168: *> \author Univ. of California Berkeley
                    169: *> \author Univ. of Colorado Denver
                    170: *> \author NAG Ltd.
1.8       bertrand  171: *
                    172: *> \ingroup doubleOTHEReigen
                    173: *
                    174: *  =====================================================================
1.1       bertrand  175:       SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
                    176:      $                  LDZ, WORK, INFO )
                    177: *
1.18    ! bertrand  178: *  -- LAPACK driver routine --
1.1       bertrand  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    181: *
                    182: *     .. Scalar Arguments ..
                    183:       CHARACTER          JOBZ, UPLO
                    184:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
                    185: *     ..
                    186: *     .. Array Arguments ..
                    187:       DOUBLE PRECISION   AB( LDAB, * ), BB( LDBB, * ), W( * ),
                    188:      $                   WORK( * ), Z( LDZ, * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Local Scalars ..
                    194:       LOGICAL            UPPER, WANTZ
                    195:       CHARACTER          VECT
                    196:       INTEGER            IINFO, INDE, INDWRK
                    197: *     ..
                    198: *     .. External Functions ..
                    199:       LOGICAL            LSAME
                    200:       EXTERNAL           LSAME
                    201: *     ..
                    202: *     .. External Subroutines ..
                    203:       EXTERNAL           DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA
                    204: *     ..
                    205: *     .. Executable Statements ..
                    206: *
                    207: *     Test the input parameters.
                    208: *
                    209:       WANTZ = LSAME( JOBZ, 'V' )
                    210:       UPPER = LSAME( UPLO, 'U' )
                    211: *
                    212:       INFO = 0
                    213:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    214:          INFO = -1
                    215:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    216:          INFO = -2
                    217:       ELSE IF( N.LT.0 ) THEN
                    218:          INFO = -3
                    219:       ELSE IF( KA.LT.0 ) THEN
                    220:          INFO = -4
                    221:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    222:          INFO = -5
                    223:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    224:          INFO = -7
                    225:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    226:          INFO = -9
                    227:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    228:          INFO = -12
                    229:       END IF
                    230:       IF( INFO.NE.0 ) THEN
                    231:          CALL XERBLA( 'DSBGV ', -INFO )
                    232:          RETURN
                    233:       END IF
                    234: *
                    235: *     Quick return if possible
                    236: *
                    237:       IF( N.EQ.0 )
                    238:      $   RETURN
                    239: *
                    240: *     Form a split Cholesky factorization of B.
                    241: *
                    242:       CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    243:       IF( INFO.NE.0 ) THEN
                    244:          INFO = N + INFO
                    245:          RETURN
                    246:       END IF
                    247: *
                    248: *     Transform problem to standard eigenvalue problem.
                    249: *
                    250:       INDE = 1
                    251:       INDWRK = INDE + N
                    252:       CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
                    253:      $             WORK( INDWRK ), IINFO )
                    254: *
                    255: *     Reduce to tridiagonal form.
                    256: *
                    257:       IF( WANTZ ) THEN
                    258:          VECT = 'U'
                    259:       ELSE
                    260:          VECT = 'N'
                    261:       END IF
                    262:       CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
                    263:      $             WORK( INDWRK ), IINFO )
                    264: *
                    265: *     For eigenvalues only, call DSTERF.  For eigenvectors, call SSTEQR.
                    266: *
                    267:       IF( .NOT.WANTZ ) THEN
                    268:          CALL DSTERF( N, W, WORK( INDE ), INFO )
                    269:       ELSE
                    270:          CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
                    271:      $                INFO )
                    272:       END IF
                    273:       RETURN
                    274: *
                    275: *     End of DSBGV
                    276: *
                    277:       END

CVSweb interface <joel.bertrand@systella.fr>