Annotation of rpl/lapack/lapack/dsbevx_2stage.f, revision 1.5

1.1       bertrand    1: *> \brief <b> DSBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  @precisions fortran d -> s
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download DSBEVX_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE DSBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q,
                     24: *                                 LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                     25: *                                 LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
                     26: *
                     27: *       IMPLICIT NONE
                     28: *
                     29: *       .. Scalar Arguments ..
                     30: *       CHARACTER          JOBZ, RANGE, UPLO
                     31: *       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
                     32: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     33: *       ..
                     34: *       .. Array Arguments ..
                     35: *       INTEGER            IFAIL( * ), IWORK( * )
                     36: *       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
                     37: *      $                   Z( LDZ, * )
                     38: *       ..
                     39: *
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> DSBEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
                     47: *> of a real symmetric band matrix A using the 2stage technique for
                     48: *> the reduction to tridiagonal. Eigenvalues and eigenvectors can
                     49: *> be selected by specifying either a range of values or a range of
                     50: *> indices for the desired eigenvalues.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] JOBZ
                     57: *> \verbatim
                     58: *>          JOBZ is CHARACTER*1
                     59: *>          = 'N':  Compute eigenvalues only;
                     60: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     61: *>                  Not available in this release.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] RANGE
                     65: *> \verbatim
                     66: *>          RANGE is CHARACTER*1
                     67: *>          = 'A': all eigenvalues will be found;
                     68: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     69: *>                 will be found;
                     70: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] UPLO
                     74: *> \verbatim
                     75: *>          UPLO is CHARACTER*1
                     76: *>          = 'U':  Upper triangle of A is stored;
                     77: *>          = 'L':  Lower triangle of A is stored.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The order of the matrix A.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] KD
                     87: *> \verbatim
                     88: *>          KD is INTEGER
                     89: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     90: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] AB
                     94: *> \verbatim
                     95: *>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     96: *>          On entry, the upper or lower triangle of the symmetric band
                     97: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     98: *>          j-th column of A is stored in the j-th column of the array AB
                     99: *>          as follows:
                    100: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                    101: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                    102: *>
                    103: *>          On exit, AB is overwritten by values generated during the
                    104: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                    105: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                    106: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                    107: *>          the diagonal and first subdiagonal of T are returned in the
                    108: *>          first two rows of AB.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] LDAB
                    112: *> \verbatim
                    113: *>          LDAB is INTEGER
                    114: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] Q
                    118: *> \verbatim
                    119: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
                    120: *>          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
                    121: *>                         reduction to tridiagonal form.
                    122: *>          If JOBZ = 'N', the array Q is not referenced.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDQ
                    126: *> \verbatim
                    127: *>          LDQ is INTEGER
                    128: *>          The leading dimension of the array Q.  If JOBZ = 'V', then
                    129: *>          LDQ >= max(1,N).
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] VL
                    133: *> \verbatim
                    134: *>          VL is DOUBLE PRECISION
                    135: *>          If RANGE='V', the lower bound of the interval to
                    136: *>          be searched for eigenvalues. VL < VU.
                    137: *>          Not referenced if RANGE = 'A' or 'I'.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] VU
                    141: *> \verbatim
                    142: *>          VU is DOUBLE PRECISION
                    143: *>          If RANGE='V', the upper bound of the interval to
                    144: *>          be searched for eigenvalues. VL < VU.
                    145: *>          Not referenced if RANGE = 'A' or 'I'.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] IL
                    149: *> \verbatim
                    150: *>          IL is INTEGER
                    151: *>          If RANGE='I', the index of the
                    152: *>          smallest eigenvalue to be returned.
                    153: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    154: *>          Not referenced if RANGE = 'A' or 'V'.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[in] IU
                    158: *> \verbatim
                    159: *>          IU is INTEGER
                    160: *>          If RANGE='I', the index of the
                    161: *>          largest eigenvalue to be returned.
                    162: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    163: *>          Not referenced if RANGE = 'A' or 'V'.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] ABSTOL
                    167: *> \verbatim
                    168: *>          ABSTOL is DOUBLE PRECISION
                    169: *>          The absolute error tolerance for the eigenvalues.
                    170: *>          An approximate eigenvalue is accepted as converged
                    171: *>          when it is determined to lie in an interval [a,b]
                    172: *>          of width less than or equal to
                    173: *>
                    174: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    175: *>
                    176: *>          where EPS is the machine precision.  If ABSTOL is less than
                    177: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    178: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    179: *>          by reducing AB to tridiagonal form.
                    180: *>
                    181: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    182: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    183: *>          If this routine returns with INFO>0, indicating that some
                    184: *>          eigenvectors did not converge, try setting ABSTOL to
                    185: *>          2*DLAMCH('S').
                    186: *>
                    187: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    188: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    189: *>          Kahan, LAPACK Working Note #3.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] M
                    193: *> \verbatim
                    194: *>          M is INTEGER
                    195: *>          The total number of eigenvalues found.  0 <= M <= N.
                    196: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] W
                    200: *> \verbatim
                    201: *>          W is DOUBLE PRECISION array, dimension (N)
                    202: *>          The first M elements contain the selected eigenvalues in
                    203: *>          ascending order.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] Z
                    207: *> \verbatim
                    208: *>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
                    209: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    210: *>          contain the orthonormal eigenvectors of the matrix A
                    211: *>          corresponding to the selected eigenvalues, with the i-th
                    212: *>          column of Z holding the eigenvector associated with W(i).
                    213: *>          If an eigenvector fails to converge, then that column of Z
                    214: *>          contains the latest approximation to the eigenvector, and the
                    215: *>          index of the eigenvector is returned in IFAIL.
                    216: *>          If JOBZ = 'N', then Z is not referenced.
                    217: *>          Note: the user must ensure that at least max(1,M) columns are
                    218: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    219: *>          is not known in advance and an upper bound must be used.
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[in] LDZ
                    223: *> \verbatim
                    224: *>          LDZ is INTEGER
                    225: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    226: *>          JOBZ = 'V', LDZ >= max(1,N).
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] WORK
                    230: *> \verbatim
                    231: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    232: *> \endverbatim
                    233: *>
                    234: *> \param[in] LWORK
                    235: *> \verbatim
                    236: *>          LWORK is INTEGER
                    237: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    238: *>          otherwise  
                    239: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    240: *>                                   LWORK = MAX(1, 7*N, dimension) where
                    241: *>                                   dimension = (2KD+1)*N + KD*NTHREADS + 2*N
                    242: *>                                   where KD is the size of the band.
                    243: *>                                   NTHREADS is the number of threads used when
                    244: *>                                   openMP compilation is enabled, otherwise =1.
                    245: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
                    246: *>
                    247: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    248: *>          only calculates the optimal size of the WORK array, returns
                    249: *>          this value as the first entry of the WORK array, and no error
                    250: *>          message related to LWORK is issued by XERBLA.
                    251: *> \endverbatim
                    252: *>
                    253: *> \param[out] IWORK
                    254: *> \verbatim
                    255: *>          IWORK is INTEGER array, dimension (5*N)
                    256: *> \endverbatim
                    257: *>
                    258: *> \param[out] IFAIL
                    259: *> \verbatim
                    260: *>          IFAIL is INTEGER array, dimension (N)
                    261: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    262: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    263: *>          indices of the eigenvectors that failed to converge.
                    264: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    265: *> \endverbatim
                    266: *>
                    267: *> \param[out] INFO
                    268: *> \verbatim
                    269: *>          INFO is INTEGER
                    270: *>          = 0:  successful exit.
                    271: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    272: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    273: *>                Their indices are stored in array IFAIL.
                    274: *> \endverbatim
                    275: *
                    276: *  Authors:
                    277: *  ========
                    278: *
                    279: *> \author Univ. of Tennessee
                    280: *> \author Univ. of California Berkeley
                    281: *> \author Univ. of Colorado Denver
                    282: *> \author NAG Ltd.
                    283: *
                    284: *> \ingroup doubleOTHEReigen
                    285: *
                    286: *> \par Further Details:
                    287: *  =====================
                    288: *>
                    289: *> \verbatim
                    290: *>
                    291: *>  All details about the 2stage techniques are available in:
                    292: *>
                    293: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    294: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    295: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    296: *>  of 2011 International Conference for High Performance Computing,
                    297: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    298: *>  Article 8 , 11 pages.
                    299: *>  http://doi.acm.org/10.1145/2063384.2063394
                    300: *>
                    301: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    302: *>  An improved parallel singular value algorithm and its implementation 
                    303: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    304: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    305: *>  Denver, Colorado, USA, 2013.
                    306: *>  Article 90, 12 pages.
                    307: *>  http://doi.acm.org/10.1145/2503210.2503292
                    308: *>
                    309: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    310: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    311: *>  calculations based on fine-grained memory aware tasks.
                    312: *>  International Journal of High Performance Computing Applications.
                    313: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    314: *>  http://hpc.sagepub.com/content/28/2/196 
                    315: *>
                    316: *> \endverbatim
                    317: *
                    318: *  =====================================================================
                    319:       SUBROUTINE DSBEVX_2STAGE( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q,
                    320:      $                          LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                    321:      $                          LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
                    322: *
                    323:       IMPLICIT NONE
                    324: *
1.5     ! bertrand  325: *  -- LAPACK driver routine --
1.1       bertrand  326: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    327: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    328: *
                    329: *     .. Scalar Arguments ..
                    330:       CHARACTER          JOBZ, RANGE, UPLO
                    331:       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N, LWORK
                    332:       DOUBLE PRECISION   ABSTOL, VL, VU
                    333: *     ..
                    334: *     .. Array Arguments ..
                    335:       INTEGER            IFAIL( * ), IWORK( * )
                    336:       DOUBLE PRECISION   AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ),
                    337:      $                   Z( LDZ, * )
                    338: *     ..
                    339: *
                    340: *  =====================================================================
                    341: *
                    342: *     .. Parameters ..
                    343:       DOUBLE PRECISION   ZERO, ONE
                    344:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    345: *     ..
                    346: *     .. Local Scalars ..
                    347:       LOGICAL            ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ,
                    348:      $                   LQUERY
                    349:       CHARACTER          ORDER
                    350:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    351:      $                   INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ,
                    352:      $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS,
                    353:      $                   NSPLIT
                    354:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    355:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    356: *     ..
                    357: *     .. External Functions ..
                    358:       LOGICAL            LSAME
1.3       bertrand  359:       INTEGER            ILAENV2STAGE
1.1       bertrand  360:       DOUBLE PRECISION   DLAMCH, DLANSB
1.3       bertrand  361:       EXTERNAL           LSAME, DLAMCH, DLANSB, ILAENV2STAGE
1.1       bertrand  362: *     ..
                    363: *     .. External Subroutines ..
                    364:       EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DSCAL,
                    365:      $                   DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA,
                    366:      $                   DSYTRD_SB2ST
                    367: *     ..
                    368: *     .. Intrinsic Functions ..
                    369:       INTRINSIC          MAX, MIN, SQRT
                    370: *     ..
                    371: *     .. Executable Statements ..
                    372: *
                    373: *     Test the input parameters.
                    374: *
                    375:       WANTZ = LSAME( JOBZ, 'V' )
                    376:       ALLEIG = LSAME( RANGE, 'A' )
                    377:       VALEIG = LSAME( RANGE, 'V' )
                    378:       INDEIG = LSAME( RANGE, 'I' )
                    379:       LOWER = LSAME( UPLO, 'L' )
                    380:       LQUERY = ( LWORK.EQ.-1 )
                    381: *
                    382:       INFO = 0
                    383:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    384:          INFO = -1
                    385:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    386:          INFO = -2
                    387:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    388:          INFO = -3
                    389:       ELSE IF( N.LT.0 ) THEN
                    390:          INFO = -4
                    391:       ELSE IF( KD.LT.0 ) THEN
                    392:          INFO = -5
                    393:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    394:          INFO = -7
                    395:       ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
                    396:          INFO = -9
                    397:       ELSE
                    398:          IF( VALEIG ) THEN
                    399:             IF( N.GT.0 .AND. VU.LE.VL )
                    400:      $         INFO = -11
                    401:          ELSE IF( INDEIG ) THEN
                    402:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    403:                INFO = -12
                    404:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    405:                INFO = -13
                    406:             END IF
                    407:          END IF
                    408:       END IF
                    409:       IF( INFO.EQ.0 ) THEN
                    410:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
                    411:      $      INFO = -18
                    412:       END IF
                    413: *
                    414:       IF( INFO.EQ.0 ) THEN
                    415:          IF( N.LE.1 ) THEN
                    416:             LWMIN = 1
                    417:             WORK( 1 ) = LWMIN
                    418:          ELSE
1.3       bertrand  419:             IB    = ILAENV2STAGE( 2, 'DSYTRD_SB2ST', JOBZ,
                    420:      $                            N, KD, -1, -1 )
                    421:             LHTRD = ILAENV2STAGE( 3, 'DSYTRD_SB2ST', JOBZ,
                    422:      $                            N, KD, IB, -1 )
                    423:             LWTRD = ILAENV2STAGE( 4, 'DSYTRD_SB2ST', JOBZ,
                    424:      $                            N, KD, IB, -1 )
1.1       bertrand  425:             LWMIN = 2*N + LHTRD + LWTRD
                    426:             WORK( 1 )  = LWMIN
                    427:          ENDIF
                    428: *
                    429:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    430:      $      INFO = -20
                    431:       END IF
                    432: *
                    433:       IF( INFO.NE.0 ) THEN
                    434:          CALL XERBLA( 'DSBEVX_2STAGE ', -INFO )
                    435:          RETURN
                    436:       ELSE IF( LQUERY ) THEN
                    437:          RETURN
                    438:       END IF
                    439: *
                    440: *     Quick return if possible
                    441: *
                    442:       M = 0
                    443:       IF( N.EQ.0 )
                    444:      $   RETURN
                    445: *
                    446:       IF( N.EQ.1 ) THEN
                    447:          M = 1
                    448:          IF( LOWER ) THEN
                    449:             TMP1 = AB( 1, 1 )
                    450:          ELSE
                    451:             TMP1 = AB( KD+1, 1 )
                    452:          END IF
                    453:          IF( VALEIG ) THEN
                    454:             IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
                    455:      $         M = 0
                    456:          END IF
                    457:          IF( M.EQ.1 ) THEN
                    458:             W( 1 ) = TMP1
                    459:             IF( WANTZ )
                    460:      $         Z( 1, 1 ) = ONE
                    461:          END IF
                    462:          RETURN
                    463:       END IF
                    464: *
                    465: *     Get machine constants.
                    466: *
                    467:       SAFMIN = DLAMCH( 'Safe minimum' )
                    468:       EPS    = DLAMCH( 'Precision' )
                    469:       SMLNUM = SAFMIN / EPS
                    470:       BIGNUM = ONE / SMLNUM
                    471:       RMIN   = SQRT( SMLNUM )
                    472:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    473: *
                    474: *     Scale matrix to allowable range, if necessary.
                    475: *
                    476:       ISCALE = 0
                    477:       ABSTLL = ABSTOL
                    478:       IF( VALEIG ) THEN
                    479:          VLL = VL
                    480:          VUU = VU
                    481:       ELSE
                    482:          VLL = ZERO
                    483:          VUU = ZERO
                    484:       END IF
                    485:       ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
                    486:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    487:          ISCALE = 1
                    488:          SIGMA = RMIN / ANRM
                    489:       ELSE IF( ANRM.GT.RMAX ) THEN
                    490:          ISCALE = 1
                    491:          SIGMA = RMAX / ANRM
                    492:       END IF
                    493:       IF( ISCALE.EQ.1 ) THEN
                    494:          IF( LOWER ) THEN
                    495:             CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    496:          ELSE
                    497:             CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    498:          END IF
                    499:          IF( ABSTOL.GT.0 )
                    500:      $      ABSTLL = ABSTOL*SIGMA
                    501:          IF( VALEIG ) THEN
                    502:             VLL = VL*SIGMA
                    503:             VUU = VU*SIGMA
                    504:          END IF
                    505:       END IF
                    506: *
                    507: *     Call DSYTRD_SB2ST to reduce symmetric band matrix to tridiagonal form.
                    508: *
                    509:       INDD    = 1
                    510:       INDE    = INDD + N
                    511:       INDHOUS = INDE + N
                    512:       INDWRK  = INDHOUS + LHTRD
                    513:       LLWORK  = LWORK - INDWRK + 1
                    514: *
                    515:       CALL DSYTRD_SB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ),
                    516:      $                    WORK( INDE ), WORK( INDHOUS ), LHTRD, 
                    517:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    518: *
                    519: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    520: *     to zero, then call DSTERF or SSTEQR.  If this fails for some
                    521: *     eigenvalue, then try DSTEBZ.
                    522: *
                    523:       TEST = .FALSE.
                    524:       IF (INDEIG) THEN
                    525:          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
                    526:             TEST = .TRUE.
                    527:          END IF
                    528:       END IF
                    529:       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
                    530:          CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
                    531:          INDEE = INDWRK + 2*N
                    532:          IF( .NOT.WANTZ ) THEN
                    533:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    534:             CALL DSTERF( N, W, WORK( INDEE ), INFO )
                    535:          ELSE
                    536:             CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    537:             CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
                    538:             CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
                    539:      $                   WORK( INDWRK ), INFO )
                    540:             IF( INFO.EQ.0 ) THEN
                    541:                DO 10 I = 1, N
                    542:                   IFAIL( I ) = 0
                    543:    10          CONTINUE
                    544:             END IF
                    545:          END IF
                    546:          IF( INFO.EQ.0 ) THEN
                    547:             M = N
                    548:             GO TO 30
                    549:          END IF
                    550:          INFO = 0
                    551:       END IF
                    552: *
                    553: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
                    554: *
                    555:       IF( WANTZ ) THEN
                    556:          ORDER = 'B'
                    557:       ELSE
                    558:          ORDER = 'E'
                    559:       END IF
                    560:       INDIBL = 1
                    561:       INDISP = INDIBL + N
                    562:       INDIWO = INDISP + N
                    563:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    564:      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
                    565:      $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
                    566:      $             IWORK( INDIWO ), INFO )
                    567: *
                    568:       IF( WANTZ ) THEN
                    569:          CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
                    570:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    571:      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
                    572: *
                    573: *        Apply orthogonal matrix used in reduction to tridiagonal
                    574: *        form to eigenvectors returned by DSTEIN.
                    575: *
                    576:          DO 20 J = 1, M
                    577:             CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    578:             CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO,
                    579:      $                  Z( 1, J ), 1 )
                    580:    20    CONTINUE
                    581:       END IF
                    582: *
                    583: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    584: *
                    585:    30 CONTINUE
                    586:       IF( ISCALE.EQ.1 ) THEN
                    587:          IF( INFO.EQ.0 ) THEN
                    588:             IMAX = M
                    589:          ELSE
                    590:             IMAX = INFO - 1
                    591:          END IF
                    592:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    593:       END IF
                    594: *
                    595: *     If eigenvalues are not in order, then sort them, along with
                    596: *     eigenvectors.
                    597: *
                    598:       IF( WANTZ ) THEN
                    599:          DO 50 J = 1, M - 1
                    600:             I = 0
                    601:             TMP1 = W( J )
                    602:             DO 40 JJ = J + 1, M
                    603:                IF( W( JJ ).LT.TMP1 ) THEN
                    604:                   I = JJ
                    605:                   TMP1 = W( JJ )
                    606:                END IF
                    607:    40       CONTINUE
                    608: *
                    609:             IF( I.NE.0 ) THEN
                    610:                ITMP1 = IWORK( INDIBL+I-1 )
                    611:                W( I ) = W( J )
                    612:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    613:                W( J ) = TMP1
                    614:                IWORK( INDIBL+J-1 ) = ITMP1
                    615:                CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    616:                IF( INFO.NE.0 ) THEN
                    617:                   ITMP1 = IFAIL( I )
                    618:                   IFAIL( I ) = IFAIL( J )
                    619:                   IFAIL( J ) = ITMP1
                    620:                END IF
                    621:             END IF
                    622:    50    CONTINUE
                    623:       END IF
                    624: *
                    625: *     Set WORK(1) to optimal workspace size.
                    626: *
                    627:       WORK( 1 ) = LWMIN
                    628: *
                    629:       RETURN
                    630: *
                    631: *     End of DSBEVX_2STAGE
                    632: *
                    633:       END

CVSweb interface <joel.bertrand@systella.fr>